def _put_in_matching_buffer(self, y):
     t = y.dtype
     if t == np.float64:
         return DLPythonDoubleBuffer(y)
     elif t == np.float32:
         return DLPythonFloatBuffer(y)
     elif t == np.bool_:
         return DLPythonBitBuffer(y)
     elif t == np.int8:
         return DLPythonByteBuffer(y)
     elif t == np.uint8:
         return DLPythonUnsignedByteBuffer(y)
     elif t == np.int16:
         return DLPythonShortBuffer(y)
     elif t == np.int32:
         return DLPythonIntBuffer(y)
     elif t == np.int64:
         return DLPythonLongBuffer(y)
     elif t == np.object:
         return DLPythonStringBuffer(y)
     # TODO: support more types
     else:
         raise ValueError(
             'Output type of the network \'{}\' is not supported.'.format(
                 y.dtype))
 def _put_in_matching_buffer(self, y):
     t = y.dtype
     if t == np.float64:
         return DLPythonDoubleBuffer(y)
     elif t == np.float32:
         return DLPythonFloatBuffer(y)
     elif t == np.bool_:
         return DLPythonBitBuffer(y)
     elif t == np.int8:
         return DLPythonByteBuffer(y)
     elif t == np.uint8:
         return DLPythonUnsignedByteBuffer(y)
     elif t == np.int16:
         return DLPythonShortBuffer(y)
     elif t == np.int32:
         return DLPythonIntBuffer(y)
     elif t == np.int64:
         return DLPythonLongBuffer(y)
     elif t == np.object:
         return DLPythonStringBuffer(y)
     # TODO: support more types
     else:
         # TODO: warning to stderr? fail?
         return DLPythonDoubleBuffer(y)
def serialize(value):
    if not value.array.dtype == np.float64:
        value = DLPythonDoubleBuffer(value.array.astype(np.float64))
    buffer = BytesIO(bytes())
    buffer.write(value.array.tobytes())
    return buffer.getvalue()
def deserialize(bytes):
    return DLPythonDoubleBuffer(np.frombuffer(bytes, dtype=np.float64))
Exemple #5
0
# -*- coding: utf-8 -*-

import numpy as np
from DLPythonDataBuffers import DLPythonDoubleBuffer

global test_out_data
test_out_data = test_in_data.iloc[:, 0].map(lambda buff: DLPythonDoubleBuffer(
    np.vectorize(lambda x: x * 5)(buff.array))).to_frame('test_out_data')