def main(options):

    #take options from the yaml config
    with open(options.config, 'r') as config_file:
        config            = yaml.load(config_file)
        output_tag        = config['output_tag']

        mc_dir            = config['mc_file_dir']
        mc_fnames         = config['mc_file_names']
  
        #data not needed yet, could use this for validation later. keep for compat with class
        data_dir          = config['data_file_dir']
        data_fnames       = config['data_file_names']

        train_vars        = config['train_vars']
        vars_to_add       = config['vars_to_add']
        presel            = config['preselection']

        proc_to_tree_name = config['proc_to_tree_name']

        #sig_colour        = 'forestgreen'
        sig_colour        = 'red'
 
                                           #Data handling stuff#
        sys.exit(1)

        #load the mc dataframe for all years
        if options.pt_reweight: 
            cr_selection = config['reweight_cr']
            output_tag += '_pt_reweighted'
            root_obj = ROOTHelpers(output_tag, mc_dir, mc_fnames, data_dir, data_fnames, proc_to_tree_name, train_vars, vars_to_add, cr_selection)
        else: root_obj = ROOTHelpers(output_tag, mc_dir, mc_fnames, data_dir, data_fnames, proc_to_tree_name, train_vars, vars_to_add, presel)

        for sig_obj in root_obj.sig_objects:
            root_obj.load_mc(sig_obj, reload_samples=options.reload_samples)
        for bkg_obj in root_obj.bkg_objects:
            root_obj.load_mc(bkg_obj, bkg=True, reload_samples=options.reload_samples)
        for data_obj in root_obj.data_objects:
            root_obj.load_data(data_obj, reload_samples=options.reload_samples)
        root_obj.concat()

        if options.pt_reweight and options.reload_samples: 
            root_obj.apply_pt_rew('DYMC', presel)

                                            #Plotter stuff#
 
        #set up X, w and y, train-test 
        plotter = Plotter(root_obj, train_vars, sig_col=sig_colour, norm_to_data=True)
        for var in train_vars:
            plotter.plot_input(var, options.n_bins, output_tag, options.ratio_plot, norm_to_data=True)
Exemple #2
0
def main(options):

    #take options from the yaml config
    with open(options.config, 'r') as config_file:
        config = yaml.load(config_file)
        output_tag = config['output_tag']

        mc_dir = config['mc_file_dir']
        mc_fnames = config['mc_file_names']

        #data not needed yet, but stil specify in the config for compatibility with constructor
        data_dir = config['data_file_dir']
        data_fnames = config['data_file_names']

        proc_to_tree_name = config['proc_to_tree_name']

        train_vars = config['train_vars']
        vars_to_add = config['vars_to_add']
        presel = config['preselection']

        #Data handling stuff#

        #load the mc dataframe for all years
        if options.pt_reweight:
            cr_selection = config['reweight_cr']
            output_tag += '_pt_reweighted'
            root_obj = ROOTHelpers(output_tag, mc_dir, mc_fnames, data_dir,
                                   data_fnames, proc_to_tree_name, train_vars,
                                   vars_to_add, cr_selection)
        else:
            root_obj = ROOTHelpers(output_tag, mc_dir, mc_fnames, data_dir,
                                   data_fnames, proc_to_tree_name, train_vars,
                                   vars_to_add, presel)

        for sig_obj in root_obj.sig_objects:
            root_obj.load_mc(sig_obj, reload_samples=options.reload_samples)
        for bkg_obj in root_obj.bkg_objects:
            root_obj.load_mc(bkg_obj,
                             bkg=True,
                             reload_samples=options.reload_samples)
        for data_obj in root_obj.data_objects:
            root_obj.load_data(data_obj, reload_samples=options.reload_samples)
        root_obj.concat()

        #reweight samples in bins of pT (and maybe Njets), for each year separely. Note targetted selection
        # is applied here and all df's are resaved for smaller mem
        if options.pt_reweight and options.reload_samples:  #FIXME what about reading files in first time, wanting to pT rew, but not including options.reload samples? It wont reweight and save the reweighted df's
            root_obj.apply_pt_rew('DYMC', presel)
            #root_obj.pt_njet_reweight('DYMC', year, presel)

            #BDT stuff#

        #set up X, w and y, train-test
        bdt_hee = BDTHelpers(root_obj,
                             train_vars,
                             options.train_frac,
                             eq_train=options.eq_train)
        bdt_hee.create_X_and_y(mass_res_reweight=True)

        #submit the HP search if option true
        if options.hp_perm is not None:
            if options.opt_hps and options.train_best:
                raise Exception(
                    'Cannot optimise HPs and train best model. Run optimal training after hyper paramter optimisation'
                )
            elif options.opt_hps and options.hp_perm:
                raise Exception(
                    'opt_hps option submits scripts with the hp_perm option; Cannot submit a script with both!'
                )
            else:
                print(
                    'About to train + validate on dataset with {} fold splitting'
                    .format(options.k_folds))
                bdt_hee.set_hyper_parameters(options.hp_perm)
                bdt_hee.set_k_folds(options.k_folds)
                for i_fold in range(options.k_folds):
                    bdt_hee.set_i_fold(i_fold)
                    bdt_hee.train_classifier(root_obj.mc_dir, save=False)
                    bdt_hee.validation_rocs.append(bdt_hee.compute_roc())
                with open('{}/bdt_hp_opt_{}.txt'.format(mc_dir, output_tag),
                          'a+') as val_roc_file:
                    bdt_hee.compare_rocs(val_roc_file, options.hp_perm)
                    val_roc_file.close()

        elif options.opt_hps:
            #FIXME: add warning that many jobs are about to be submiited
            if options.k_folds < 2:
                raise ValueError('K-folds option must be at least 2')
            if path.isfile('{}/bdt_hp_opt_{}.txt'.format(mc_dir, output_tag)):
                system('rm {}/bdt_hp_opt_{}.txt'.format(mc_dir, output_tag))
                print('deleting: {}/bdt_hp_opt_{}.txt'.format(
                    mc_dir, output_tag))
            bdt_hee.batch_gs_cv(k_folds=options.k_folds,
                                pt_rew=options.pt_reweight)

        elif options.train_best:
            output_tag += '_best'
            with open('{}/bdt_hp_opt_{}.txt'.format(mc_dir, output_tag),
                      'r') as val_roc_file:
                hp_roc = val_roc_file.readlines()
                best_params = hp_roc[-1].split(';')[0]
                print('Best classifier params are: {}'.format(best_params))
                bdt_hee.set_hyper_parameters(best_params)
                bdt_hee.train_classifier(root_obj.mc_dir,
                                         save=True,
                                         model_name=output_tag)
                bdt_hee.compute_roc()
                bdt_hee.plot_roc(output_tag)
                bdt_hee.plot_output_score(
                    output_tag,
                    ratio_plot=True,
                    norm_to_data=(not options.pt_reweight))

        #else just train BDT with default HPs
        else:
            bdt_hee.train_classifier(root_obj.mc_dir,
                                     save=True,
                                     model_name=output_tag + '_clf')
            #bdt_hee.train_classifier(root_obj.mc_dir, save=False, model_name=output_tag+'_clf')
            bdt_hee.compute_roc()
            bdt_hee.plot_roc(output_tag)
            #bdt_hee.plot_output_score(output_tag, ratio_plot=True, norm_to_data=(not options.pt_reweight), log=False)
            bdt_hee.plot_output_score(output_tag,
                                      ratio_plot=True,
                                      norm_to_data=(not options.pt_reweight),
                                      log=True)
Exemple #3
0
def main(options):

    #take options from the yaml config
    with open(options.config, 'r') as config_file:
        config = yaml.load(config_file)
        output_tag = config['output_tag']

        mc_dir = config['mc_file_dir']
        mc_fnames = config['mc_file_names']

        data_dir = config['data_file_dir']
        data_fnames = config['data_file_names']

        proc_to_tree_name = config['proc_to_tree_name']

        object_vars = config['object_vars']
        flat_obj_vars = [var for i_object in object_vars for var in i_object]
        event_vars = config['event_vars']
        vars_to_add = config['vars_to_add']
        presel = config['preselection']

        #Data handling stuff#

        #load the mc dataframe for all years
        if options.pt_reweight:
            cr_selection = config['reweight_cr']
            output_tag += '_pt_reweighted'
            root_obj = ROOTHelpers(output_tag, mc_dir, mc_fnames, data_dir,
                                   data_fnames, proc_to_tree_name,
                                   flat_obj_vars + event_vars, vars_to_add,
                                   cr_selection)
        else:
            root_obj = ROOTHelpers(output_tag, mc_dir, mc_fnames, data_dir,
                                   data_fnames, proc_to_tree_name,
                                   flat_obj_vars + event_vars, vars_to_add,
                                   presel)

        for sig_obj in root_obj.sig_objects:
            root_obj.load_mc(sig_obj, reload_samples=options.reload_samples)
        if not options.data_as_bkg:
            for bkg_obj in root_obj.bkg_objects:
                root_obj.load_mc(bkg_obj,
                                 bkg=True,
                                 reload_samples=options.reload_samples)
        else:
            for data_obj in root_obj.data_objects:
                root_obj.load_data(data_obj,
                                   reload_samples=options.reload_samples)
            #overwrite background attribute, for compat with DNN class
            root_obj.mc_df_bkg = root_obj.data_df
        root_obj.concat()

        if options.pt_reweight and options.reload_samples:
            root_obj.apply_pt_rew('DYMC', presel)

        #apply cut-based selection if not optimising BDT score (pred probs still evaluated for compatability w exisiting catOpt constructor).
        if len(options.cut_based_str) > 0:
            root_obj.apply_more_cuts(options.cut_based_str)

            # DNN evaluation stuff #

        #load architecture and model weights
        print 'loading DNN: {}'.format(options.model_architecture)
        with open('{}'.format(options.model_architecture), 'r') as model_json:
            model_architecture = model_json.read()
        model = keras.models.model_from_json(model_architecture)
        model.load_weights('{}'.format(options.model))

        LSTM = LSTM_DNN(root_obj, object_vars, event_vars, 1.0, False, True)

        # set up X and y Matrices. Log variables that have GeV units
        LSTM.var_transform(
            do_data=False
        )  #bkg=data here. This option is for plotting purposes
        X_tot, y_tot = LSTM.create_X_y()
        X_tot = X_tot[flat_obj_vars + event_vars]  #filter unused vars

        #scale X_vars to mean=0 and std=1. Use scaler fit during previous dnn training
        LSTM.load_X_scaler(out_tag=output_tag)
        X_tot = LSTM.X_scaler.transform(X_tot)

        #make 2D vars for LSTM layers
        X_tot = pd.DataFrame(X_tot, columns=flat_obj_vars + event_vars)
        X_tot_high_level = X_tot[event_vars].values
        X_tot_low_level = LSTM.join_objects(X_tot[flat_obj_vars])

        #predict probs
        pred_prob_tot = model.predict([X_tot_high_level, X_tot_low_level],
                                      batch_size=1024).flatten()

        sig_weights = root_obj.mc_df_sig['weight'].values
        sig_m_ee = root_obj.mc_df_sig['dielectronMass'].values
        pred_prob_sig = pred_prob_tot[y_tot == 1]

        bkg_weights = root_obj.data_df['weight'].values
        bkg_m_ee = root_obj.data_df['dielectronMass'].values
        pred_prob_bkg = pred_prob_tot[y_tot == 0]

        #category optimisation stuff#

        #set up optimiser ranges and no. categories to test if non-cut based
        #ranges    = [ [0.3,1.] ]
        ranges = [[0.15, 1.]]
        names = ['{} score'.format(output_tag)]  #arbitrary
        print_str = ''
        cats = [1, 2, 3, 4]
        AMS = []

        #just to use class methods here
        if len(options.cut_based_str) > 0:
            optimiser = CatOptim(sig_weights, sig_m_ee, [pred_prob_sig],
                                 bkg_weights, bkg_m_ee, [pred_prob_bkg], 0,
                                 ranges, names)
            AMS = optimiser.cutBasedAMS()
            print 'String for cut based optimimastion: {}'.format(
                options.cut_based_str)
            print 'Cut-based optimimsation gives AMS = {:1.8f}'.format(AMS)

        else:
            for n_cats in cats:
                optimiser = CatOptim(sig_weights, sig_m_ee, [pred_prob_sig],
                                     bkg_weights, bkg_m_ee, [pred_prob_bkg],
                                     n_cats, ranges, names)
                optimiser.optimise(
                    1, options.n_iters
                )  #set lumi to 1 as already scaled when loading in
                print_str += 'Results for {} categories : \n'.format(n_cats)
                print_str += optimiser.getPrintableResult()
                AMS.append(optimiser.bests.totSignif)
            print '\n {}'.format(print_str)

        #make nCat vs AMS plots
        Plotter.cats_vs_ams(cats, AMS, output_tag)
Exemple #4
0
def main(options):

    #take options from the yaml config
    with open(options.config, 'r') as config_file:
        config = yaml.load(config_file)
        output_tag = config['output_tag']

        mc_dir = config['mc_file_dir']
        mc_fnames = config['mc_file_names']

        data_dir = config['data_file_dir']
        data_fnames = config['data_file_names']

        proc_to_tree_name = config['proc_to_tree_name']

        object_vars = config['object_vars']
        flat_obj_vars = [var for i_object in object_vars for var in i_object]
        event_vars = config['event_vars']
        vars_to_add = config['vars_to_add']
        presel = config['preselection']

        #Data handling stuff#

        if options.pt_reweight:
            cr_selection = config['reweight_cr']
            output_tag += '_pt_reweighted'
            root_obj = ROOTHelpers(output_tag, mc_dir, mc_fnames, data_dir,
                                   data_fnames, proc_to_tree_name,
                                   flat_obj_vars + event_vars, vars_to_add,
                                   cr_selection)
        else:
            root_obj = ROOTHelpers(output_tag, mc_dir, mc_fnames, data_dir,
                                   data_fnames, proc_to_tree_name,
                                   flat_obj_vars + event_vars, vars_to_add,
                                   presel)

        #load the dataframes for all years
        for sig_obj in root_obj.sig_objects:
            root_obj.load_mc(sig_obj, reload_samples=options.reload_samples)
        for bkg_obj in root_obj.bkg_objects:
            root_obj.load_mc(bkg_obj,
                             bkg=True,
                             reload_samples=options.reload_samples)
        for data_obj in root_obj.data_objects:  # for plotting
            root_obj.load_data(data_obj, reload_samples=options.reload_samples)
        root_obj.concat()

        #reweight samples in bins of pT (and maybe Njets), for each year separely.
        if options.pt_reweight and options.reload_samples:
            root_obj.apply_pt_rew('DYMC', presel)

            #LSTM stuff#

        LSTM = LSTM_DNN(root_obj, object_vars, event_vars, options.train_frac,
                        options.eq_weights, options.batch_boost)

        if not options.opt_hps:
            LSTM.var_transform(do_data=True)
            X_tot, y_tot = LSTM.create_X_y(mass_res_reweight=True)
            LSTM.split_X_y(X_tot, y_tot, do_data=True)

            if options.hp_perm is not None:
                LSTM.get_X_scaler(LSTM.all_vars_X_train,
                                  out_tag=output_tag,
                                  save=False)
            else:
                LSTM.get_X_scaler(LSTM.all_vars_X_train, out_tag=output_tag)
            LSTM.X_scale_train_test(do_data=True)
            LSTM.set_low_level_2D_test_train(do_data=True,
                                             ignore_train=options.batch_boost)

        #functions called in subbed job, if options.opt_hps was true
        if options.hp_perm is not None:
            if options.opt_hps and options.train_best:
                raise Exception(
                    'Cannot optimise HPs and train best model. Run optimal training after hyper paramter optimisation'
                )
            elif options.opt_hps and options.hp_perm:
                raise Exception(
                    'opt_hps option submits scripts with the hp_perm option; Cannot submit a script with both!'
                )
            else:
                LSTM.set_hyper_parameters(options.hp_perm)
                LSTM.model.summary()
                LSTM.train_w_batch_boost(out_tag=output_tag, save=False)
                with open('{}/lstm_hp_opt_{}.txt'.format(mc_dir, output_tag),
                          'a+') as val_roc_file:
                    LSTM.compare_rocs(val_roc_file, options.hp_perm)
                    val_roc_file.close()

        elif options.opt_hps:
            #FIXME: add warning that many jobs are about to be submiited
            if path.isfile('{}/lstm_hp_opt_{}.txt'.format(mc_dir, output_tag)):
                system('rm {}/lstm_hp_opt_{}.txt'.format(mc_dir, output_tag))
                print('deleting: {}/lstm_hp_opt_{}.txt'.format(
                    mc_dir, output_tag))
            LSTM.batch_gs_cv(pt_rew=options.pt_reweight)

        elif options.train_best:
            output_tag += '_best'
            with open('{}/lstm_hp_opt_{}.txt'.format(mc_dir, output_tag),
                      'r') as val_roc_file:
                hp_roc = val_roc_file.readlines()
                best_params = hp_roc[-1].split(';')[0]
                print 'Best classifier params are: {}'.format(best_params)
                LSTM.set_hyper_parameters(best_params)
                LSTM.model.summary()
                LSTM.train_w_batch_boost(out_tag=output_tag)
                #compute final roc on test set
                LSTM.compute_roc(batch_size=1024)
                LSTM.plot_roc(output_tag)
                LSTM.plot_output_score(output_tag,
                                       batch_size=1024,
                                       ratio_plot=True,
                                       norm_to_data=(not options.pt_reweight))

        #else train with basic parameters/architecture
        else:
            LSTM.model.summary()
            if options.batch_boost:  #type of model selection so need validation set
                LSTM.train_w_batch_boost(
                    out_tag=output_tag
                )  #handles creating validation set and 2D vars and sequential saving
            else:
                LSTM.train_network(epochs=5, batch_size=1024)
                #LSTM.train_network(epochs=7, batch_size=32)
                LSTM.save_model(out_tag=output_tag)
            LSTM.compute_roc(batch_size=1024)
            #compute final roc on test set
            LSTM.plot_roc(output_tag)
            LSTM.plot_output_score(output_tag,
                                   batch_size=1024,
                                   ratio_plot=True,
                                   norm_to_data=(not options.pt_reweight))
Exemple #5
0
def main(options):

    #take options from the yaml config
    with open(options.config, 'r') as config_file:
        config = yaml.load(config_file)
        output_tag = config['output_tag']

        mc_dir = config['mc_file_dir']
        mc_fnames = config['mc_file_names']

        #data not needed yet, could use this for validation later. keep for compat with class
        data_dir = config['data_file_dir']
        data_fnames = config['data_file_names']

        train_vars = config['train_vars']
        vars_to_add = config['vars_to_add']
        presel = config['preselection']

        proc_to_tree_name = config['proc_to_tree_name']

        #sig_colour        = 'forestgreen'
        sig_colour = 'red'

        #Data handling stuff#

        #load the mc dataframe for all years
        if options.pt_reweight:
            cr_selection = config['reweight_cr']
            output_tag += '_pt_reweighted'
            root_obj = ROOTHelpers(output_tag, mc_dir, mc_fnames, data_dir,
                                   data_fnames, proc_to_tree_name, train_vars,
                                   vars_to_add, cr_selection)
        else:
            root_obj = ROOTHelpers(output_tag, mc_dir, mc_fnames, data_dir,
                                   data_fnames, proc_to_tree_name, train_vars,
                                   vars_to_add, presel)

        for sig_obj in root_obj.sig_objects:
            root_obj.load_mc(sig_obj, reload_samples=options.reload_samples)
        for bkg_obj in root_obj.bkg_objects:
            root_obj.load_mc(bkg_obj,
                             bkg=True,
                             reload_samples=options.reload_samples)
        for data_obj in root_obj.data_objects:
            root_obj.load_data(data_obj, reload_samples=options.reload_samples)
        root_obj.concat()

        if options.pt_reweight and options.reload_samples:
            root_obj.apply_pt_rew('DYMC', presel)

    #load MVA
        with open(options.mva_config, 'r') as mva_config_file:
            config = yaml.load(mva_config_file)
            model = config['models'][options.mva_proc]
            boundaries = config['boundaries'][options.mva_proc]

            #add DNN later
            if isinstance(model, str):
                print 'evaluating BDT: {}'.format(model)
                clf = pickle.load(open('models/{}'.format(model), "rb"))
                root_obj.mc_df_sig[
                    options.mva_proc + '_mva'] = clf.predict_proba(
                        root_obj.mc_df_sig[train_vars].values)[:, 1:].ravel()
                root_obj.mc_df_bkg[
                    options.mva_proc + '_mva'] = clf.predict_proba(
                        root_obj.mc_df_bkg[train_vars].values)[:, 1:].ravel()
                root_obj.data_df[
                    options.mva_proc + '_mva'] = clf.predict_proba(
                        root_obj.data_df[train_vars].values)[:, 1:].ravel()

            else:
                raise IOError(
                    'Did not get a classifier models in correct format in config'
                )

            #Plotter stuff#

        plotter = Plotter(root_obj,
                          train_vars,
                          sig_col=sig_colour,
                          norm_to_data=True)
        cat_counter = 0
        for b in boundaries:
            if cat_counter == 0:
                extra_cuts = options.mva_proc + '_mva >' + str(
                    boundaries['tag_0'])
            else:
                extra_cuts = (options.mva_proc + '_mva <' + str(
                    boundaries['tag_' + str(cat_counter - 1)])) + ' and ' + (
                        options.mva_proc + '_mva >' +
                        str(boundaries['tag_' + str(cat_counter)]))
            plotter.plot_input(options.mass_var_name,
                               options.n_bins,
                               output_tag,
                               options.ratio_plot,
                               norm_to_data=True,
                               extra_cuts=extra_cuts,
                               extra_tag=cat_counter,
                               blind=True)
            cat_counter += 1