Exemple #1
0
    def apiEconomy(self):
        gdp_india = {}
        for record in self.data['records']:
            gdp = {}

            # taking out yearly GDP value from records
            gdp['GDP_in_rs_cr'] = int(
                record['gross_domestic_product_in_rs_cr_at_2004_05_prices'])
            gdp_india[record['financial_year']] = gdp
            gdp_india_yrs = list(gdp_india)

        for i in range(len(gdp_india_yrs)):
            if i == 0:
                pass
            else:
                key = 'GDP_Growth_' + gdp_india_yrs[i]
                # calculating GDP growth on yearly basis
                gdp_india[gdp_india_yrs[i]][key] = round(
                    ((gdp_india[gdp_india_yrs[i]]['GDP_in_rs_cr'] -
                      gdp_india[gdp_india_yrs[i - 1]]['GDP_in_rs_cr']) /
                     gdp_india[gdp_india_yrs[i - 1]]['GDP_in_rs_cr']) * 100, 2)

        # connection to mongo db
        mongoDB_obj = MongoDB(urllib.parse.quote_plus('root'),
                              urllib.parse.quote_plus('password'), 'host',
                              'GDP')
        # Insert Data into MongoDB
        mongoDB_obj.insert_into_db(gdp_india, 'India_GDP')
 def apiEconomy(self):
     gdp_india = {}
     for record in self.data['records']:
         gdp={}
         gdp['GDP_in_rs_cr'] = int(record['gross_domestic_product_in_rs_cr_at_2004_05_prices'])
         gdp_india[record['financial_year']] = gdp
         gdp_india_yrs = list(gdp_india)
     for i in range(len(gdp_india_yrs)):
         if i == 0:
             pass
         else:
             key = 'GDP_Growth_' + gdp_india_yrs[i]
             gdp_india[gdp_india_yrs[i]][key] = round(((gdp_india[gdp_india_yrs[i]]['GDP_in_rs_cr'] -gdp_india[gdp_india_yrs[i-1]]['GDP_in_rs_cr'])/gdp_india[gdp_india_yrs[i-1]]['GDP_in_rs_cr'])*100,2)
     print(gdp_india)
     
     # connection to mongo db
     mongoDB_obj = MongoDB(urllib.parse.quote_plus('root'), urllib.parse.quote_plus('password'), 'host', 'GDP')
     # Insert Data into MongoDB
     mongoDB_obj.insert_into_db(gdp_india, 'India_GDP')
Exemple #3
0
    def apiPollution(self):
        air_data = self.data['results']

        # Converting nested data into linear structure
        air_list = []
        for data in air_data:
            for measurement in data['measurements']:
                air_dict = {}
                air_dict['city'] = data['city']
                air_dict['country'] = data['country']
                air_dict['parameter'] = measurement['parameter']
                air_dict['value'] = measurement['value']
                air_dict['unit'] = measurement['unit']
                air_list.append(air_dict)

        # Convert list of dict into pandas df
        df = pd.DataFrame(air_list, columns=air_dict.keys())

        # connection to mongo db
        mongoDB_obj = MongoDB(urllib.parse.quote_plus('root'),
                              urllib.parse.quote_plus('password'), 'host',
                              'Pollution_Data')
        # Insert Data into MongoDB
        mongoDB_obj.insert_into_db(df, 'Air_Quality_India')
 def apiPollution(self):
     air_data = self.data['results']
     # Converting nested data into linear structure
     air_list = []
     for data in air_data:
         for measurement in data['measurements']:
             air_dict = {}
             air_dict['location'] = data['location']
             air_dict['city'] = data['city']
             air_dict['country'] = data['country']
             air_dict['parameter'] = measurement['parameter']
             air_dict['value'] = measurement['value']
             air_dict['lastUpdated'] = measurement['lastUpdated']
             air_dict['unit'] = measurement['unit']
             air_dict['sourceName'] = measurement['sourceName']
             air_list.append(air_dict)
     print('len', len(air_list))
     # Convert list of dict into pandas df
     df = pd.DataFrame(air_list, columns=air_dict.keys())
     print(df.size)
     # connection to mongo db
     mongoDB_obj = MongoDB(urllib.quote_plus('root'), urllib.quote_plus('password'), 'host', 'Pollution_Data')
     # Insert Data into MongoDB
     mongoDB_obj.insert_into_db(df, 'Air_Quality_India')