def knownSamplesize(seed, data): z = Zsc.zsc(seed, data) Mar = MarginOfError.marginOfError(seed, data) StDe = Stddev.stddev(data) value = (z * StDe) / Mar sam = Exponential.exponential(value, 2) return sam
def medianskewness(data): ni = (Subtraction.difference(Mean.mean(data), Median.median(data))) nii = Division.division(ni, Stddev.stddev(data)) return nii
def modeskewness(data): n = (Subtraction.difference(Mean.mean(data), Mode.mode(data))) nn = Division.division(n, Stddev.stddev(data)) return nn
def populationcorrelation(data1, data2): cov = Covariance.covariance(data1, data2) stdDev1 = Stddev.stddev(data1) stdDev2 = Stddev.stddev(data2) return cov / (stdDev1 * stdDev2)
def test_stddev(self): self.assertEqual(1.5118578920369088, Stddev.stddev(self.test))
def zsc(seed, data): X = RandPick.randPickSeed(seed, data) mean = Mean.mean(data) stddev = Stddev.stddev(data) return (X - mean) / stddev
def samplecorrelation(seed, sample_size, data1, data2): dataA = RandPick.randPickListSeed(seed, sample_size, data1) dataB = RandPick.randPickListSeed(seed, sample_size, data2) return Covariance.covariance(dataA, dataB) / (Stddev.stddev(dataA) * Stddev.stddev(dataB))