def __init__(self, dataset_name='SumMe',split='train', clip_size=50, output3=False):
        if dataset_name.lower() not in ['summe', 'tvsum']:
            print('Unrecognized dataset {:s}'.format(dataset_name))
            sys.exit(-1)
        self.dataset_name = dataset_name
        self.split = split
        self.filenames = datasetpaths[self.dataset_name.lower()].file_names
        self.data_loader = data_loaders[self.dataset_name.lower()]

        n_files = len(self.filenames)
        if self.split == 'train':
            self.filenames = self.filenames[:int(0.8*n_files)]
        elif self.split == 'val':
            self.filenames = self.filenames[int(0.8*n_files):]
        else:
            print("Unrecognized split:{:s}".format(self.split))
            sys.exit(-1)
        self.clip_size = clip_size
        self.output3 = output3

        Kydataset = KyLoader.loadKyDataset(self.dataset_name.lower())
        conversion = KyLoader.loadConversion(self.dataset_name.lower())
        self.raw2Ky = conversion[0]
        self.Ky2raw = conversion[1]


        self.features = {}
        self.avg_summary = {}
        self.annotations = []
        pbar = progressbar.ProgressBar(max_value=len(self.filenames))
        print("Processing {:s}\t{:s} data".format(self.dataset_name, self.split))
        for file_dix, s_filename in enumerate(self.filenames):
            pbar.update(file_dix)
            Kykey = self.raw2Ky[s_filename]
            s_features, _, _ = self.data_loader.load_by_name(s_filename)
            s_usersummaries = Kydataset[Kykey]['user_summary'][...]
            s_usersummaries = s_usersummaries.transpose()

            self.features[s_filename] = s_features
            s_avg_summary = np.mean(s_usersummaries, axis=1)
            self.avg_summary[s_filename] = s_avg_summary
            s_video_len = len(s_avg_summary)

            s_segments = LoaderUtils.convertlabels2segs(s_usersummaries)
            for s_seg in s_segments:
                sSegment = LoaderUtils.Segment(s_filename)
                s_score  = np.mean(s_avg_summary[s_seg[0]:s_seg[1]])
                sSegment.initId(s_seg[0], s_seg[1], s_video_len, score=s_score)
                self.annotations.append(sSegment)

        self.augmented_ratio = 10

        self.dataset_size = len(self.annotations)
        print("{:s}\t{:s}\t{:d}".format(self.dataset_name, self.split, self.dataset_size))
Exemple #2
0
    def __init__(self,
                 dataset_name='SumMe',
                 split='train',
                 clip_size=100,
                 sum_budget=0.15,
                 sample_rate=None,
                 overlap_ratio=0.25):

        if dataset_name.lower() not in ['summe', 'tvsum']:
            print('Unrecognized dataset {:s}'.format(dataset_name))
        self.dataset_name = dataset_name
        self.eval_metrics = eval_metrics[self.dataset_name.lower()]
        self.split = split
        self.sum_budget = sum_budget
        self.filenames = datasetpaths[self.dataset_name.lower()].file_names
        self.data_loader = data_loaders[self.dataset_name.lower()]

        n_files = len(self.filenames)

        if self.split == 'train':
            self.filenames = self.filenames[:int(0.8 * n_files)]
        elif self.split == 'val':
            self.filenames = self.filenames[int(0.8 * n_files):]

        else:
            print("Unrecognized split:{:s}".format(self.split))
        self.overlap_ratio = overlap_ratio
        self.clip_size = clip_size
        if sample_rate is None:
            self.sample_rate = [1, 5, 10]
        else:
            if isinstance(sample_rate, list):
                self.sample_rate = sample_rate
            else:
                self.sample_rate = [sample_rate]

        self.videofeatures = []
        self.groundtruthscores = []
        self.segments = []
        self.videonames = []
        Kydataset = KyLoader.loadKyDataset(self.dataset_name.lower())
        conversion = KyLoader.loadConversion(self.dataset_name.lower())
        self.raw2Ky = conversion[0]
        self.Ky2raw = conversion[1]

        for s_video_idx, s_filename in enumerate(self.filenames):
            KyKey = self.raw2Ky[s_filename]

            s_video_features, _, _ = self.data_loader.load_by_name(s_filename)
            s_scores = Kydataset[KyKey]['user_summary'][...]
            s_scores = s_scores.transpose()
            s_segments = LoaderUtils.convertlabels2segs(s_scores)

            self.groundtruthscores.append(s_scores)
            self.videofeatures.append(s_video_features)
            self.segments.append(s_segments)
            self.videonames.append(s_filename)
        self.dataset_size = len(self.videofeatures)
        print("{:s}\tEvaluator: {:s}\t{:d} Videos".format(
            self.dataset_name, self.split, self.dataset_size))
    def __init__(self,
                 dataset_name='TVSum',
                 split='train',
                 seq_length=90,
                 overlap=0.9,
                 sample_rate=None,
                 feature_file_ext='npy',
                 sum_budget=0.15,
                 train_val_perms=None,
                 eval_metrics='avg',
                 data_path=None):

        if dataset_name.lower() not in ['summe', 'tvsum']:
            print('Unrecognized dataset {:s}'.format(dataset_name))
        self.dataset_name = dataset_name
        self.eval_metrics = eval_metrics  #[self.dataset_name.lower()]
        self.split = split
        self.sum_budget = sum_budget
        self.feature_file_ext = feature_file_ext

        self.feature_directory = os.path.join(
            data_path, '%s/features/c3dd-red500' % (dataset_name))
        self.filenames = os.listdir(self.feature_directory)
        self.filenames = [f.split('.', 1)[0] for f in self.filenames]
        self.filenames.sort()
        n_files = len(self.filenames)
        self.filenames = [self.filenames[i] for i in train_val_perms]

        if sample_rate is None:
            self.sample_rate = [1, 2, 4]
        else:
            self.sample_rate = sample_rate
        self.seq_len = seq_length
        self.overlap = overlap

        self.videofeatures = []
        self.groundtruthscores = []
        self.groundtruth01scores = []
        # self.segments = []
        self.videonames = []
        KY_dataset_path = os.path.join(data_path, 'KY_AAAI18/datasets')
        Kydataset = KyLoader.loadKyDataset(
            self.dataset_name.lower(),
            file_path=os.path.join(
                KY_dataset_path, 'eccv16_dataset_{:s}_google_pool5.h5'.format(
                    dataset_name.lower())))
        conversion = KyLoader.loadConversion(
            self.dataset_name.lower(),
            file_path=os.path.join(
                KY_dataset_path,
                '{:s}_name_conversion.pkl'.format(dataset_name.lower())))
        self.raw2Ky = conversion[0]
        self.Ky2raw = conversion[1]

        for s_video_idx, s_filename in enumerate(self.filenames):
            KyKey = self.raw2Ky[s_filename]

            s_scores = Kydataset[KyKey]['gtscore'][...]
            s_scores = s_scores.reshape([-1, 1])

            n_frames = s_scores.shape[0]

            s_segments, s_segment_scores = LoaderUtils.convertscores2segs(
                s_scores)
            selected_segments = rep_conversions.selecteTopSegments(
                s_segments, s_segment_scores, n_frames)
            s_frame01scores = rep_conversions.keyshots2frame01scores(
                selected_segments, n_frames)
            # s_frame01scores = rep_conversions.framescore2frame01score_inteval(s_scores.reshape([-1]), s_segments, lratio=self.sum_budget)

            # the size of s_features is: [length, fea_dim]
            # s_video_features = np.load(
            #     os.path.join(self.feature_directory, '{:s}.{:s}'.format(s_filename, self.feature_file_ext)))
            s_video_features = Kydataset[KyKey]['features']
            s_features_len = len(s_video_features)
            # the length of c3d feature is larger than annotation, choose middles to match
            assert abs(
                n_frames - s_features_len
            ) < 6, 'annotation and feature length not equal! {:d}, {:d}'.format(
                n_frames, s_features_len)
            offset = abs(s_features_len - n_frames) / 2
            s_video_features = s_video_features[offset:offset + n_frames]

            self.groundtruthscores.append(s_scores)
            self.groundtruth01scores.append(s_frame01scores)
            self.videofeatures.append(s_video_features)
            # self.segments.append(s_segments)
            self.videonames.append(s_filename)
        self.dataset_size = len(self.videofeatures)
        print("{:s}\tEvaluator: {:s}\t{:d} Videos".format(
            self.dataset_name, self.split, self.dataset_size))
    def __init__(self, dataset_name='TVSum', split='train', seq_length=90, overlap=0.9, sample_rate=None,
                 feature_file_ext='npy', sum_budget=0.15, train_val_perms=None, eval_metrics='max', data_path=None):

        if dataset_name.lower() not in ['summe', 'tvsum']:
            print('Unrecognized dataset {:s}'.format(dataset_name))
        self.dataset_name = dataset_name
        self.eval_metrics = eval_metrics#[self.dataset_name.lower()]
        self.split = split
        self.sum_budget = sum_budget
        self.feature_file_ext = feature_file_ext
        
        # self.feature_directory = os.path.join(user_root, 'datasets/%s/features/c3dd-red500' % (dataset_name))
        self.feature_directory = os.path.join(data_path, '%s/features/c3dd-red500' % (dataset_name))
        self.filenames = os.listdir(self.feature_directory)
        self.filenames = [f.split('.', 1)[0] for f in self.filenames]
        self.filenames.sort()
        n_files = len(self.filenames)
        # selected_perms = range(n_files)
        # if self.split == 'train':
        #     selected_perms = train_val_perms[:int(0.8 * n_files)]
        # elif self.split == 'val':
        #     selected_perms = train_val_perms[int(0.8 * n_files):]
        # else:
        #     print("Unrecognized split:{:s}".format(self.split))
        
        # self.filenames = [self.filenames[i] for i in selected_perms]
        self.filenames = [self.filenames[i] for i in train_val_perms]

        if sample_rate is None:
            self.sample_rate = [1, 2, 4]
        else:
            self.sample_rate = sample_rate
        self.seq_len = seq_length
        self.overlap = overlap

        self.videofeatures = []
        self.groundtruthscores = []
        self.combinegroundtruth01scores = []
        # self.segments = []
        self.videonames = []
        KY_dataset_path = os.path.join(data_path, 'KY_AAAI18/datasets')
        Kydataset = KyLoader.loadKyDataset(self.dataset_name.lower(), file_path=os.path.join(KY_dataset_path, 'eccv16_dataset_{:s}_google_pool5.h5'.format(dataset_name.lower())))
        conversion = KyLoader.loadConversion(self.dataset_name.lower(), file_path=os.path.join(KY_dataset_path, '{:s}_name_conversion.pkl'.format(dataset_name.lower())))
        self.raw2Ky = conversion[0]
        self.Ky2raw = conversion[1]

        # project_root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
        # raw_data_path = os.path.join(project_root, 'Devs_vsSum/datasets/TVSum/TVSumRaw.pkl')
        # raw_annotation_data = pkl.load(open(raw_data_path, 'rb'))

        for s_video_idx, s_filename in enumerate(self.filenames):
            KyKey = self.raw2Ky[s_filename]

            s_scores = Kydataset[KyKey]['user_summary'][...]
            s_scores = s_scores.transpose()
            n_frames = len(s_scores)
            # s_segments = LoaderUtils.convertlabels2segs(s_scores)

            # raw_user_summaris = raw_annotation_data[s_filename]
            # raw_user_summaris_01 = []
            # for s_raw_user_summary in raw_user_summaris:
            #     assert len(s_raw_user_summary) == n_frames

            #     s_raw_user_summary = np.expand_dims(np.array(s_raw_user_summary), -1)
            #     s_summary_segments, s_summary_scores = LoaderUtils.convertscores2segs(s_raw_user_summary)
            #     s_selected_segments = rep_conversions.selecteTopSegments(s_summary_segments, s_summary_scores, n_frames)
            #     # raw_user_summaris_01.append(s_segments)
            #     s_frame01scores = rep_conversions.keyshots2frame01scores(s_selected_segments, n_frames)
            #     raw_user_summaris_01.append(s_frame01scores)
            # raw_user_summaris_01 = np.stack(raw_user_summaris_01, axis=1)


            # raw_user_summaris = np.array(raw_user_summaris)
            # raw_user_summaris = raw_user_summaris.transpose()
            ky_combine_summaris = np.mean(s_scores, 1, keepdims=True)
            s_combine_segments, s_combine_segment_scores = LoaderUtils.convertscores2segs(ky_combine_summaris)
            s_combine_selected_segments = rep_conversions.selecteTopSegments(s_combine_segments, s_combine_segment_scores, n_frames)
            s_combine_frame01scores = rep_conversions.keyshots2frame01scores(s_combine_selected_segments, n_frames)


            # the size of s_features is: [length, fea_dim]
            s_video_features = np.load(
                os.path.join(self.feature_directory, '{:s}.{:s}'.format(s_filename, self.feature_file_ext)))
            s_features_len = len(s_video_features)
            # the length of c3d feature is larger than annotation, choose middles to match
            assert abs(n_frames - s_features_len) < 6, 'annotation and feature length not equal! {:d}, {:d}'.format(
                n_frames, s_features_len)
            offset = abs(s_features_len - n_frames) / 2
            s_video_features = s_video_features[offset:offset + n_frames]

            self.groundtruthscores.append(s_scores)
            self.videofeatures.append(s_video_features)
            self.combinegroundtruth01scores.append(s_combine_frame01scores)
            # self.segments.append(s_segments)
            self.videonames.append(s_filename)
        self.dataset_size = len(self.videofeatures)
        print("{:s}\tEvaluator: {:s}\t{:d} Videos".format(self.dataset_name, self.split, self.dataset_size))
    def __init__(self,
                 dataset_name='TVSum',
                 split='train',
                 max_input_len=130,
                 maximum_outputs=26,
                 feature_file_ext='npy',
                 sum_budget=0.15,
                 train_val_perms=None,
                 eval_metrics='avg',
                 data_path=None):

        if dataset_name.lower() not in ['summe', 'tvsum']:
            print('Unrecognized dataset {:s}'.format(dataset_name))
        self.dataset_name = dataset_name
        self.eval_metrics = eval_metrics  #[self.dataset_name.lower()]
        self.split = split
        self.sum_budget = sum_budget
        self.feature_file_ext = feature_file_ext

        # self.feature_directory = os.path.join(user_root, 'datasets/%s/features/c3dd-red500' % (dataset_name))
        self.feature_directory = os.path.join(
            data_path, '%s/features/c3dd-red500' % (dataset_name))
        self.filenames = os.listdir(self.feature_directory)
        self.filenames = [f.split('.', 1)[0] for f in self.filenames]
        self.filenames.sort()
        n_files = len(self.filenames)
        self.filenames = [self.filenames[i] for i in train_val_perms]

        self.max_input_len = max_input_len
        self.maximum_outputs = maximum_outputs

        self.segment_features = []
        self.groundtruthscores = []
        self.video_nfps = []
        self.video_n_frames = []
        self.video_cps = []
        self.videonames = []
        KY_dataset_path = os.path.join(data_path, 'KY_AAAI18/datasets')
        Kydataset = KyLoader.loadKyDataset(
            self.dataset_name.lower(),
            file_path=os.path.join(
                KY_dataset_path, 'eccv16_dataset_{:s}_google_pool5.h5'.format(
                    dataset_name.lower())))
        conversion = KyLoader.loadConversion(
            self.dataset_name.lower(),
            file_path=os.path.join(
                KY_dataset_path,
                '{:s}_name_conversion.pkl'.format(dataset_name.lower())))
        self.raw2Ky = conversion[0]
        self.Ky2raw = conversion[1]

        # project_root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
        # raw_data_path = os.path.join(project_root, 'Devs_vsSum/datasets/TVSum/TVSumRaw.pkl')
        # raw_annotation_data = pkl.load(open(raw_data_path, 'rb'))

        for s_video_idx, s_filename in enumerate(self.filenames):
            KyKey = self.raw2Ky[s_filename]

            s_scores = Kydataset[KyKey]['user_summary'][...]
            s_scores = s_scores.transpose()
            n_frames = len(s_scores)

            # load raw scores
            # # the size of raw_user_summaris is [len, num_users]
            # raw_user_summaris = np.array(raw_annotation_data[s_filename]).transpose()

            # change_points, each segment is [cps[i,0]: cps[i,1]+1]
            cps = Kydataset[KyKey]['change_points'][...]
            # total number of frames
            num_frames = Kydataset[KyKey]['n_frames'][()]
            assert n_frames == num_frames, 'frame length should be the same'
            # num of frames per segment
            nfps = Kydataset[KyKey]['n_frame_per_seg'][...]

            num_segments = cps.shape[0]

            # the size of s_features is: [length, fea_dim]
            s_video_features = np.load(
                os.path.join(
                    self.feature_directory,
                    '{:s}.{:s}'.format(s_filename, self.feature_file_ext)))
            s_features_len = len(s_video_features)
            # the length of c3d feature is larger than annotation, choose middles to match
            assert abs(
                n_frames - s_features_len
            ) < 6, 'annotation and feature length not equal! {:d}, {:d}'.format(
                n_frames, s_features_len)
            offset = abs(s_features_len - n_frames) / 2
            s_video_features = s_video_features[offset:offset + n_frames]

            # get average features
            s_segment_features = LoaderUtils.get_avg_seg_features(
                s_video_features, cps, num_segments)

            self.groundtruthscores.append(s_scores)
            self.segment_features.append(s_segment_features)
            self.videonames.append(s_filename)
            self.video_cps.append(cps)
            self.video_nfps.append(nfps)
            self.video_n_frames.append(n_frames)

        self.dataset_size = len(self.segment_features)
        print("{:s}\tEvaluator: {:s}\t{:d} Videos".format(
            self.dataset_name, self.split, self.dataset_size))