Exemple #1
0
    def forward(self, x):
        x = self.backbone(x)
        dis_gen2cen, dis_gen2ori, thresholds, amplified_thresholds, embed_gen = None, None, None, None, None
        gap = (F.adaptive_avg_pool2d(x, 1)).view(x.size(0), -1)

        if hasattr(self,'decorrelation'):
            gap = self.decorrelation(gap)

        embed_fea = self.embeddingLayer(gap) if hasattr(self, 'embeddingLayer') else gap
        centroids = F.normalize(self.centroids, dim=1, p=2) if self.norm_centroid else self.centroids
        SIMI = Similarity(scaled=self.scaled)
        sim_fea2cen = getattr(SIMI, self.similarity)(embed_fea, centroids)
        DIST = Distance(scaled=self.scaled)
        dis_fea2cen = getattr(DIST, self.distance)(embed_fea, centroids)
        dis_cen2cen = getattr(DIST, self.distance)(centroids, centroids)
        dis_thr2thr = self.cal_thr2thr()
        # if hasattr(self, 'estimator'):
        #     dis_gen2cen = getattr(DIST, self.distance)(embed_gen, centroids)
        #     dis_gen2ori = getattr(DIST, self.distance)(embed_gen, self.origin)

        return {
            "gap": gap,
            "embed_fea": embed_fea,
            "embed_gen": embed_gen,
            "sim_fea2cen": sim_fea2cen,
            "dis_fea2cen": dis_fea2cen,
            "dis_cen2cen": dis_cen2cen,
            "dis_thr2thr": dis_thr2thr,
            "thresholds": self.thresholds
        }
Exemple #2
0
    def forward(self, x):
        x = self.backbone(x)
        gap = (F.adaptive_avg_pool2d(x, 1)).view(x.size(0),
                                                 -1)  # [n, backbone_c]
        embed_fea = gap
        # embed_fea = self.embeddingLayer(gap)  # [n, embed_dim]
        norm_fea = torch.norm(embed_fea, dim=1, p=2,
                              keepdim=True)  # norm length for each image [n,1]
        embed_fea_normed = F.normalize(embed_fea, dim=1, p=2)  # [n, embed_dim]
        centroids = self.centroids  # [class, embed_dim]
        centroids_normed = F.normalize(centroids, dim=1,
                                       p=2)  # [class, embed_dim]
        SIMI = Similarity()
        # dotproduct: X*W = ||X|| * ||W|| * cos(X,W)  # [n,class]
        dotproduct_fea2cen = getattr(SIMI, "dotproduct")(embed_fea, centroids)
        # cosine: cos(X,W)  # [n,class]
        # cosine_fea2cen = getattr(SIMI, "dotproduct")(embed_fea_normed, centroids_normed)
        # normweight: ||X|| * cos(X,W)  # [n,class]
        normweight_fea2cen = getattr(SIMI, "dotproduct")(embed_fea,
                                                         centroids_normed)

        energy = torch.logsumexp(normweight_fea2cen, dim=1,
                                 keepdim=False)  # [n]

        return {
            # "gap": gap,  # [n,self.feat_dim] gap extracted by backbone
            # "embed_fea": embed_fea,  # [n,embed_dim] embedded features
            "norm_fea":
            norm_fea,  # [n,1]  the norm value of one images features, keepdim for post-processing
            # "dotproduct_fea2cen": dotproduct_fea2cen,  # [n,num_classes]
            # "cosine_fea2cen": cosine_fea2cen,  # [n,num_classes]
            "normweight_fea2cen": normweight_fea2cen,
            "energy": energy
        }
    def forward(self, x):
        x = self.backbone(x)
        dis_gen2cen, dis_gen2ori, thresholds, amplified_thresholds, embed_gen = None, None, None, None, None
        gap = (F.adaptive_avg_pool2d(x, 1)).view(x.size(0), -1)
        if hasattr(self, 'thresholds'):
            thresholds = self.thresholds
            gen = whitennoise_generator(self.estimator, gap)
            embed_gen = self.embeddingLayer(gen) if hasattr(self, 'embeddingLayer') else gen
            amplified_thresholds = self.thresholds * self.amplifier
        embed_fea = self.embeddingLayer(gap) if hasattr(self, 'embeddingLayer') else gap
        centroids = F.normalize(self.centroids, dim=1, p=2) if self.norm_centroid else self.centroids
        SIMI = Similarity(scaled=self.scaled)
        sim_fea2cen = getattr(SIMI, self.similarity)(embed_fea, centroids)
        DIST = Distance(scaled=self.scaled)
        dis_fea2cen = getattr(DIST, self.distance)(embed_fea, centroids)
        if hasattr(self, 'thresholds'):
            dis_gen2cen = getattr(DIST, self.distance)(embed_gen, centroids)
            dis_gen2ori = getattr(DIST, self.distance)(embed_gen, self.origin)

        return {
            "gap": gap,
            "embed_fea": embed_fea,
            "embed_gen": embed_gen,
            "sim_fea2cen": sim_fea2cen,
            "dis_fea2cen": dis_fea2cen,
            "dis_gen2cen": dis_gen2cen,
            "dis_gen2ori": dis_gen2ori,
            "amplified_thresholds": amplified_thresholds,
            "thresholds": thresholds
        }
Exemple #4
0
    def forward(self, input):
        x = self.backbone(input)
        gap = (F.adaptive_avg_pool2d(x, 1)).view(x.size(0), -1)
        embed_fea = self.embeddingLayer(gap) if hasattr(
            self, 'embeddingLayer') else gap
        gen = self.generator(input)
        embed_gen = self.embeddingLayer(gen) if hasattr(
            self, 'embeddingLayer') else gen

        centroids = F.normalize(self.centroids, dim=1,
                                p=2) if self.norm_centroid else self.centroids
        SIMI = Similarity(scaled=self.scaled)
        sim_fea2cen = getattr(SIMI, self.similarity)(embed_fea, centroids)
        DIST = Distance(scaled=self.scaled)
        dis_fea2cen = getattr(DIST, self.distance)(embed_fea, centroids)
        dis_gen2cen = getattr(DIST, self.distance)(embed_gen, centroids)
        dis_gen2ori = getattr(DIST, self.distance)(embed_gen, self.origin)

        thresholds = None
        if hasattr(self, 'thresholds'):
            thresholds = self.thresholds

        return {
            "gap": gap,
            "embed_fea": embed_fea,
            "embed_gen": embed_gen,
            "sim_fea2cen": sim_fea2cen,
            "dis_fea2cen": dis_fea2cen,
            "dis_gen2cen": dis_gen2cen,
            "dis_gen2ori": dis_gen2ori,
            "thresholds": thresholds
        }
    def forward(self, x):
        x = self.backbone(x)
        gap = (F.adaptive_avg_pool2d(x, 1)).view(x.size(0), -1)
        embed_fea = self.embeddingLayer(gap)
        norm_fea = torch.norm(embed_fea, dim=1, p=2, keepdim=True)
        embed_fea_normed = F.normalize(embed_fea, dim=1, p=2)
        centroids = self.centroids
        centroids_normed = F.normalize(centroids, dim=1, p=2)
        SIMI = Similarity()
        # dotproduct: X*W = ||X|| * ||W|| * cos(X,W)  ignoring transposition operation
        dotproduct_fea2cen = getattr(SIMI, "dotproduct")(embed_fea, centroids)
        # cosine: cos(X,W)   ignoring transposition operation
        cosine_fea2cen = getattr(SIMI, "dotproduct")(embed_fea_normed,
                                                     centroids_normed)
        # normweight: ||X|| * cos(X,W)
        normweight_fea2cen = getattr(SIMI, "dotproduct")(embed_fea,
                                                         centroids_normed)

        return {
            "gap": gap,  # [n,self.feat_dim] gap extracted by backbone
            "embed_fea": embed_fea,  # [n,embed_dim] embedded features
            "norm_fea":
            norm_fea,  # [n,1]  the norm value of one images features, keepdim for post-processing
            "dotproduct_fea2cen": dotproduct_fea2cen,  # [n,num_classes]
            "cosine_fea2cen": cosine_fea2cen,  # [n,num_classes]
            "normweight_fea2cen": normweight_fea2cen
        }
Exemple #6
0
    def forward(self, x):
        x = self.backbone(x)
        dis_gen2cen, dis_gen2ori, thresholds, amplified_thresholds, embed_gen = None, None, None, None, None
        gap = x
        if hasattr(self, 'estimator'):
            thresholds = self.thresholds
            gen = self.estimator.sampler(gap)
            embed_gen = self.embeddingLayer(gen) if hasattr(self, 'embeddingLayer') else gen

        embed_fea = self.embeddingLayer(gap) if hasattr(self, 'embeddingLayer') else gap
        embed_fea_2d = (self.fuse*embed_fea).sum(dim=2, keepdim=False).squeeze(dim=-1)
        centroids = F.normalize(self.centroids, dim=1, p=2) if self.norm_centroid else self.centroids
        SIMI = Similarity(scaled=self.scaled)
        sim_fea2cen = getattr(SIMI, self.similarity)(embed_fea_2d, centroids)
        DIST = Distance(scaled=self.scaled)
        dis_fea2cen = getattr(DIST, self.distance)(embed_fea_2d, centroids)
        if hasattr(self, 'estimator'):
            dis_gen2cen = getattr(DIST, self.distance)(embed_gen, centroids)
            dis_gen2ori = getattr(DIST, self.distance)(embed_gen, self.origin)

        return {
            "gap": gap,
            "embed_fea": embed_fea,
            "embed_gen": embed_gen,
            "sim_fea2cen": sim_fea2cen,
            "dis_fea2cen": dis_fea2cen,
            "dis_gen2cen": dis_gen2cen,
            "dis_gen2ori": dis_gen2ori,
            "thresholds": thresholds
        }
    def forward(self, x):
        x = self.backbone(x)
        gap = (F.adaptive_avg_pool2d(x, 1)).view(x.size(0), -1)
        embed_fea = self.embeddingLayer(gap) if hasattr(
            self, 'embeddingLayer') else gap
        SIMI = Similarity(scaled=self.scaled)
        centroids = F.normalize(self.centroids, dim=1,
                                p=2) if self.norm_centroid else self.centroids
        sim_fea2cen = getattr(SIMI, self.distance)(embed_fea, centroids)

        return {"gap": x, "embed_fea": embed_fea, "sim_fea2cen": sim_fea2cen}
Exemple #8
0
    def forward(self, x):
        x = self.backbone(x)
        gap = (F.adaptive_avg_pool2d(x, 1)).view(x.size(0), -1)
        embed_fea = self.embeddingLayer(gap)
        embed_fea_norm = F.normalize(embed_fea, dim=1, p=2)
        centroids = self.centroids
        centroids_norm = F.normalize(centroids, dim=1, p=2)
        SIMI = Similarity()
        dotproduct_fea2cen = getattr(SIMI, "dotproduct")(embed_fea, centroids)
        # cosine distance equals l2-normalized dotproduct distance. For efficient computation.
        cosine_fea2cen = getattr(SIMI, "dotproduct")(embed_fea_norm, centroids_norm)
        # # # re-range to distance defination, [0,1], smaller indicates more similar.
        # cosine_fea2cen = (1.0-cosine_fea2cen)/2.0

        return {
            "gap": gap,  # [n,self.feat_dim]
            "embed_fea": embed_fea,  # [n,embed_dim]
            "dotproduct_fea2cen": dotproduct_fea2cen,  # [n,num_classes]
            "cosine_fea2cen": cosine_fea2cen  # [n,num_classes]
        }
    def forward(self, x):
        x = self.backbone(x)
        gap = (F.adaptive_avg_pool2d(x, 1)).view(x.size(0), -1)
        embed_fea = self.embeddingLayer(gap)
        embed_fea_norm = F.normalize(embed_fea, dim=1, p=2)
        centroids = self.centroids
        centroids_norm = F.normalize(centroids, dim=1, p=2)
        SIMI = Similarity()
        dotproduct_fea2cen = getattr(SIMI, "dotproduct")(embed_fea, centroids)
        cosine_fea2cen = getattr(SIMI, "dotproduct")(embed_fea_norm,
                                                     centroids_norm)
        normweight_fea2cen = getattr(SIMI, "dotproduct")(embed_fea,
                                                         centroids_norm)

        return {
            "gap": gap,  # [n,self.feat_dim]
            "embed_fea": embed_fea,  # [n,embed_dim]
            "dotproduct_fea2cen": dotproduct_fea2cen,  # [n,num_classes]
            "cosine_fea2cen": cosine_fea2cen,  # [n,num_classes]
            "normweight_fea2cen": normweight_fea2cen
        }
Exemple #10
0
# sim_dis = SimDistance(dim_data)
# sim_cor = SimCorrelation(dim_data)
# sim_mu = SimMutual(dim_data)


def calc_and_output(sim):
    # labels_predict = k_means(sim, 6)
    model = AgglomerativeClustering(n_clusters=8, affinity='euclidean')
    labels_predict = model.fit(sim).labels_
    # labels_predict = knn_model.predict(np.max(sim) - sim)
    print('ARI:', ARI(labels, labels_predict))
    return labels_predict, ARI(labels, labels_predict)


sim_data = Similarity(dim_data, alpha=0.6, beta=0.3)
pred, ari = calc_and_output(sim_data)
rel = RelevanceMatrix(pred)
print(len(rel[rel > 1e-10]))
sim_next = sim_data
l0 = len(sim_next[sim_next > 1e-10])

while l0 != 0:
    print('l0:', l0)
    # print(sim_next, rel)
    sim_next = 0.01 * sim_next + 0.99 * rel
    pred, ari = calc_and_output(sim_next)
    rel = get_normalize(RelevanceMatrix(pred))
    l0 = len(sim_next[sim_next > 1e-5])
# calc_and_output(sim_dis)
# calc_and_output(sim_cor)