def get_distribution(self, expiry): time_to_expiry = get_time_to_expiry(expiry) distribution_df = copy.deepcopy(self.event_input_distribution_df) distribution_df.loc[:, 'Pct_Move'] *= self.mult * self.idio_mult * math.sqrt( time_to_expiry) distribution_df.loc[:, 'Relative_Price'] = distribution_df.loc[:, 'Pct_Move'] + 1 return Distribution(distribution_df)
class Stock(object): event8_info = pd.read_excel('CLVS_RiskScenarios.xlsx', header=[0], index_col=[0, 1], sheet_name='Sub_States') fda_meeting = Event('CLVS', .1, 'Q2_2018', 'FDA Meeting') data = Event('CLVS', Distribution(pd.read_csv('CLVS.csv')), 'Q2_2018', 'Ph3_Data') elagolix = ComplexEvent('CLVS', Distribution_MultiIndex(event8_info), dt.date(2018, 6, 1), 'Elagolix Approval') all_other_events = [data, fda_meeting, elagolix] def __init__(self, stock): self.stock = stock @property def idio_vol(self): return IdiosyncraticVol(self.stock, .05) @property def earnings_events(self): return get_earnings_events(self.stock) @property def takeout_event(self): return TakeoutEvent(self.stock, TakeoutParams.loc[self.stock, 'Bucket']) @property def other_events(self): if self.stock == 'CLVS': return self.all_other_events else: return [] @property def events(self): return self.earnings_events + [self.takeout_event ] + [self.idio_vol] + self.other_events @property def sorted_events(self): return sorted( self.events, key=lambda evt: Timing(evt.timing_descriptor).center_date) def get_event_timeline(self): get_event_timeline(self.events, self.stock)
def get_distribution(self, expiry: 'dt.date', *args, **kwargs): time_to_expiry = get_time_to_expiry(expiry) prob_takeout_by_expiry = time_to_expiry * self.takeout_prob prob_no_takeout_by_expiry = 1 - prob_takeout_by_expiry relative_price_takeout = (1 + self.takeout_premium) relative_price_no_takeout = 1 - (prob_takeout_by_expiry * self.takeout_premium) / ( prob_no_takeout_by_expiry) distribution_info = { 'States': ['Takeout', 'No Takeout'], 'Prob': [prob_takeout_by_expiry, prob_no_takeout_by_expiry], 'Relative_Price': [relative_price_takeout, relative_price_no_takeout], 'Pct_Move': [self.takeout_premium, relative_price_no_takeout - 1] } distribution_df = pd.DataFrame(distribution_info).set_index( 'States').loc[:, ['Prob', 'Pct_Move', 'Relative_Price']] return Distribution(distribution_df)
def get_distribution(self, expiry=None, *args, **kwargs): event_by_expiry = event_prob_by_expiry(self.timing_descriptor, expiry) event_not_by_expiry = 1 - event_by_expiry distribution_df = copy.deepcopy(self.event_input_distribution_df) distribution_df.loc[:, 'Pct_Move'] *= self.mult * self.idio_mult distribution_df.loc[:, 'Relative_Price'] = distribution_df.loc[:, 'Pct_Move'] + 1 distribution_df.loc[:, 'Prob'] *= event_by_expiry no_event_scenario = { 'State': ['No_Event'], 'Prob': [event_not_by_expiry], 'Pct_Move': [0], 'Relative_Price': [1.0] } no_event_scenario = pd.DataFrame(no_event_scenario).set_index( 'State').loc[:, ['Prob', 'Pct_Move', 'Relative_Price']] distribution_df = distribution_df.append(no_event_scenario) return Distribution(distribution_df)
return self.earnings_events + [self.takeout_event] event8_info = pd.read_excel('CLVS_RiskScenarios.xlsx', header=[0], index_col=[0, 1], sheet_name='Sub_States') idio = IdiosyncraticVol('CLVS', .05) takeout = TakeoutEvent('CLVS', 2) pres_elec = SysEvt_PresElection('CLVS', .02) earns_q2 = Earnings('CLVS', .05, dt.date(2018, 5, 15), 'Q2_2018') earns_q3 = Earnings('CLVS', .05, dt.date(2018, 8, 15), 'Q3_2018') earns_q4 = Earnings('CLVS', .05, dt.date(2018, 11, 15), 'Q4_2018') fda_meeting = Event('CLVS', .1, 'Q2_2018', 'FDA Meeting') data = Event('CLVS', Distribution(pd.read_csv('CLVS.csv')), 'Q2_2018', 'Ph3_Data') elagolix = ComplexEvent('CLVS', Distribution_MultiIndex(event8_info), dt.date(2018, 6, 1), 'Elagolix Approval') events = [ idio, takeout, pres_elec, earns_q2, earns_q3, earns_q4, fda_meeting, elagolix ] earnings = get_earnings_events('CLVS') sorted_events = sorted( events, key=lambda evt: Timing(evt.timing_descriptor).center_date) print(earnings) crbp = Stock('CRBP') print(crbp) print(crbp.stock)
expiries = [expiry3] # Define Events event8_info = pd.read_excel('CLVS_RiskScenarios.xlsx', header=[0], index_col=[0, 1], sheet_name='Sub_States') event0 = IdiosyncraticVol('CLVS', .15) event1 = SysEvt_PresElection('CLVS', .02, 'Q2_2018') event2 = Event('CLVS', .05, 'Q2_2018', 'Q2_Earnings') event3 = Event('CLVS', .05, 'Q3_2018', 'Q3_Earnings') event4 = Event('CLVS', .075, 'Q3_2018', 'Investor_Day') event5 = Event('CLVS', .1, 'Q2_2018', 'FDA_Approval') event6 = TakeoutEvent('CLVS', 2) event7 = Event('CLVS', Distribution(pd.read_csv('CLVS.csv')), 'Q2_2018', 'Ph3_Data') event8 = Event('CLVS', Distribution_MultiIndex(event8_info), 'Q3_2018', 'Elagolix_Approval') events = [event0, event1, event2, event3, event4, event5, event6] #events = [event0, event6] event0_bid = IdiosyncraticVol('CLVS', .125) event1_bid = SysEvt_PresElection('CLVS', .01, 'Q2_2018') event2_bid = Event('CLVS', .03, 'Q2_2018', 'Q2_Earnings') event3_bid = Event('CLVS', .03, 'Q3_2018', 'Q3_Earnings') event4_bid = Event('CLVS', .05, 'Q3_2018', 'Investor_Day') event5_bid = Event('CLVS', .075, 'Q2_2018', 'FDA_Approval') event6_bid = TakeoutEvent('CLVS', 3) event7_bid = Event('CLVS', Distribution(pd.read_csv('CLVS.csv')), 'Q2_2018', 'Ph3_Data')
from Event_Module import IdiosyncraticVol import datetime as dt from Distribution_Module import Distribution, float_to_bs_distribution import numpy as np import pandas as pd event = IdiosyncraticVol('CLVS', .1) distribution = event.get_distribution(dt.date(2018,5,10)) print(distribution.mean_move, distribution.average_move, distribution.straddle) distribution.get_histogram() event_input_distribution = Distribution(event.event_input_distribution_df) print(event_input_distribution.mean_move, event_input_distribution.average_move, event_input_distribution.straddle) event_input_dist = event.event_input print(event_input_dist.mean_move, event_input_dist.average_move, event_input_dist.straddle) dist = float_to_bs_distribution(.5) print("HERE",dist.mean_move, dist.average_move, dist.straddle)
def mc_simulation(): expiry = dt.date(2018, 12, 1) mc_iterations = 10**5 # Define Events event1 = TakeoutEvent('CLVS', 1) event2 = SysEvt_PresElection('CLVS', .015) event3 = Event('CLVS', Distribution(pd.read_csv('CLVS.csv')), 'Ph3_Data') event4 = Event('CLVS', .025, 'Investor_Day') event5 = Event('CLVS', .15, 'FDA_Approval') event6 = Event('CLVS', .15, 'Q1_Earnings') event7 = Event('CLVS', .05, 'Q2_Earnings') events1 = [event6] events2 = [event6, event7] events3 = [event5, event6, event7] events4 = [event1, event5, event6, event7] events5 = [event1, event3, event5, event6, event7] event_groupings = [events1, events2, events3, events4, events5] @my_time_decorator def get_total_distribution(events): mc_simulation = np.zeros(mc_iterations) for event in events: distribution = event.get_distribution(expiry) mc_simulation += distribution.mc_simulation(mc_iterations) return mc_simulation @my_time_decorator def get_option_prices(mc_distribution): strikes = np.arange(.5, 1.55, .05) option_prices = [] implied_vols = [] for strike in strikes: if strike >= 1.0: option_type = 'Call' else: option_type = 'Put' option = Option(option_type, strike, expiry) option_price = OptionPriceMC(option, mc_distribution) implied_vol = get_implied_volatility(option, 1.0, option_price) option_prices.append(option_price) implied_vols.append(implied_vol) prices_info = { 'Strikes': strikes, 'Prices': option_prices, 'IVs': implied_vols } prices_df = pd.DataFrame(prices_info).round(3) prices_df.set_index('Strikes', inplace=True) #prices_df.rename_axis(name, inplace=True) return prices_df @my_time_decorator def event_groupings_df(event_groupings): i = 0 for grouping in event_groupings: mc_distribution = get_total_distribution(grouping) prices = get_option_prices(mc_distribution).loc[:, ['IVs']] if event_groupings.index(grouping) == 0: prices_df = prices else: prices_df = pd.merge(prices_df, prices, left_index=True, right_index=True) graph_MC_distribution(mc_distribution) i += 1 return prices_df event_df = event_groupings_df(event_groupings) print(event_df)