Exemple #1
0
def get_out(out_state):
    arr = []

    for i in range(NUM_NEURONS):
        arr.append(int(round(rkf.func_to_calc_sigmoid(out_state[i][2]))))

    return arr
def get_out(out_state):
    arr = []

    for i in range(NUM_NEURONS):
        arr.append(int(round(rkf.func_to_calc_sigmoid(out_state[i][2]))))

    return arr
def calc_S(step, neuron):
    sum_S = 0

#     print("exp func : " +  str(intern_state[step][j][2]))

    for j in range(NUM_NEURONS):
            sum_S += W[neuron][j] * rkf.func_to_calc_sigmoid(intern_state[step][j][2])

#     print(sum_S)
    return sum_S
Exemple #4
0
def calc_S(step, neuron):
    sum_S = 0

    #     print("exp func : " +  str(intern_state[step][j][2]))

    for j in range(NUM_NEURONS):
        sum_S += W[neuron][j] * rkf.func_to_calc_sigmoid(
            intern_state[step][j][2])


#     print(sum_S)
    return sum_S
Exemple #5
0
def print_out(out_state):

    st_outr = ''
    idx = 0

    for i in range(NUM_NEURONS):
        st_outr += str(int(round(rkf.func_to_calc_sigmoid(out_state[i][2]))))
        idx += 1

        if idx == LINE_AMOUNT:
            print(st_outr)
            st_outr = ''
            idx = 0

    print(st_outr)
def print_out(out_state):

    st_outr = ''
    idx = 0

    for i in range(NUM_NEURONS):
        st_outr += str(int(round(rkf.func_to_calc_sigmoid(out_state[i][2]))))
        idx += 1

        if idx == LINE_AMOUNT:
            print(st_outr)
            st_outr=''
            idx = 0

    print(st_outr)
Exemple #7
0
def run():
    global intern_state

    read_patterns()
    print(W)
    learning()
    print(W)
    read_in_pattern()

    #     show_picture(I)
    fig1 = plt.figure()
    idx = 1
    show_picture(I, fig1, 5, 10, idx)
    idx += 1

    print(W)
    for i in range(len(W[0])):
        print(W[i])

#     show_picture(patterns[0], fig1, 1, 4, 1)
#     show_picture(patterns[1], fig1, 1, 4, 2)
#     show_picture(patterns[2], fig1, 1, 4, 3)
#     show_picture(patterns[3], fig1, 1, 4, 4)
#     plt.show()

    for i in range(NUM_NEURONS):
        intern_state[0][i][2] = I[i]


#     print(W)

    for sstep in range(NUM_STEPS - 1):
        for i in range(NUM_NEURONS):
            #print(intern_state[sstep])
            intern_state[sstep + 1][i] = rkf.solve_one_step(
                intern_state[sstep][i], calc_S(sstep, i), I[i],
                calc_Dxy(sstep), step_length)

        if sstep % 100 == 0:
            print("State on step=" + str(sstep))
            print_out(intern_state[sstep + 1])

            if sstep > (NUM_STEPS - 4900):
                show_picture(get_out(intern_state[sstep + 1]), fig1, 5, 10,
                             idx)
                idx += 1

    print("Done")

    show_picture(get_out(intern_state[-2]), fig1, 5, 10, idx)
    #     plt.show()

    arr_val = []
    arr_time = []
    for i in range(NUM_STEPS):
        arr_time.append(intern_state[i][0][0])
        arr_val.append(intern_state[i][0][3])

    print(arr_time)
    print(arr_val)

    plt.figure(2)

    plt.plot(arr_time, arr_val)
    plt.show()

    print_out(intern_state[-2])
def run():
    global intern_state

    read_patterns()
    print(W)
    learning()
    print(W)
    read_in_pattern()

#     show_picture(I)
    fig1 = plt.figure()
    idx = 1
    show_picture(I, fig1, 5, 10, idx)
    idx += 1

    print(W)
    for i in range(len(W[0])):
        print(W[i])

#     show_picture(patterns[0], fig1, 1, 4, 1)
#     show_picture(patterns[1], fig1, 1, 4, 2)
#     show_picture(patterns[2], fig1, 1, 4, 3)
#     show_picture(patterns[3], fig1, 1, 4, 4)
#     plt.show()

    for i in range(NUM_NEURONS):
        intern_state[0][i][2] = I[i]


#     print(W)

    for sstep in range(NUM_STEPS-1):
        for i in range(NUM_NEURONS):
            #print(intern_state[sstep])
            intern_state[sstep+1][i] = rkf.solve_one_step(intern_state[sstep][i], calc_S(sstep, i), I[i], calc_Dxy(sstep), step_length)


        if sstep % 100 == 0:
            print("State on step=" + str(sstep))
            print_out(intern_state[sstep+1])

            if sstep > (NUM_STEPS - 4900):
                show_picture(get_out(intern_state[sstep+1]), fig1, 5, 10, idx)
                idx += 1

    print("Done")

    show_picture(get_out(intern_state[-2]), fig1, 5, 10, idx)
#     plt.show()

    arr_val = []
    arr_time = []
    for i in range(NUM_STEPS):
        arr_time.append(intern_state[i][0][0])
        arr_val.append(intern_state[i][0][3])

    print(arr_time)
    print(arr_val)

    plt.figure(2)

    plt.plot(arr_time, arr_val)
    plt.show()

    print_out(intern_state[-2])