def collect_data(): robot = Robot() cubusm = CubesManager() for i in range(MAX_PICTURE_NUM): cubusm.reset_cube(rand=True) Box_position = cubusm.read_cube_pose("demo_cube") # print "cube position:", str(Box_position) joint, view = robot.get_state() rgb, dep = robot.get_rgb_dep() # b, g, r = cv2.split(rgb) # print view[0,0,0] # print dep # rgb = cv2.merge([r, g, b]) # print dep # plt.imshow(dep) # plt.show() rgb = cv2.resize(rgb, (224, 224)) dep = cv2.resize(dep, (224, 224)) # print dep cv2.imwrite( "/home/ljt/Desktop/images/rgb/" + str(Box_position) + ".png", rgb) # cv2.imwrite("/home/ljt/Desktop/ws/src/fetch_moveit_config/images/dep/" + str(Box_position) + ".png", dep) # a = np.array(rgb).shape # print a # print "camera image shape:", view.shape np.save("/home/ljt/Desktop/images/dep/" + str(Box_position), dep)
import math from camera import RGBD from MofanDDPG import DDPG from Env import Robot, CubesManager import copy import numpy as np MAX_EPISODES = 900 MAX_EP_STEPS = 5 ON_TRAIN = True if __name__ == '__main__': # set env robot = Robot() cubm = CubesManager() observation_dim = 3 action_dim = 3 action_bound = -1, 1 # set RL method (continuous) rl = DDPG(action_dim, observation_dim, action_bound) number = 0 steps = [] # start training for i in range(MAX_EPISODES): cubm.reset_cube(rand=True) Box_position = cubm.read_cube_pose("demo_cube") print "cube position:", Box_position robot.Box_position = copy.deepcopy(Box_position) now_position = robot.gripper.get_current_pose(
import math from camera import RGBD from DQN import DQN from Env import Robot, CubesManager import copy import rospy robot = Robot() cum = CubesManager() cum.reset_cube(False) robot.test1() robot.reset()
import torch from camera import RGBD from DDPG import DDPG from DQN import DQN from Env import Robot, CubesManager import copy import rospy MAX_EPISODES = 5000 MAX_EP_STEPS = 100 MEMORY_CAPACITY = 1000 if __name__ == "__main__": robot = Robot() s_dim = robot.state_dim a_dim = robot.action_dim a_bound = robot.action_bound cubm = CubesManager() rl = DQN() rl.eval_net = torch.load('eval_dqn.pkl') rl.target_net = torch.load('target_dqn.pkl') robot.reset() start_position = robot.gripper.get_current_pose( "gripper_link").pose.position # 初始的夹爪位置 st = 0 rw = 0 for i in range(1, MAX_EPISODES): cubm.reset_cube(rand=True) Box_position = cubm.read_cube_pose("cube1") # 获取物块位置 # print "cube position:", Box_position robot.Box_position = copy.deepcopy(Box_position)
""" goal = control_msgs.msg.GripperCommandGoal() goal.command.position = OPENED_POS self._client.send_goal_and_wait(goal, rospy.Duration(10)) def close(self, width=0.0, max_effort=MAX_EFFORT): """Closes the gripper. Args: width: The target gripper width, in meters. (Might need to tune to make sure the gripper won't damage itself or whatever it's gripping.) max_effort: The maximum effort, in Newtons, to use. Note that this should not be less than 35N, or else the gripper may not close. """ assert CLOSED_POS <= width <= OPENED_POS goal = control_msgs.msg.GripperCommandGoal() goal.command.position = width goal.command.max_effort = max_effort self._client.send_goal_and_wait(goal, rospy.Duration(10)) if __name__ == "__main__": test = CubesManager() i = 1 while i < 10: print(i) test.reset_cube(rand=True) rospy.sleep(1) i += 1