from Animat.QLearn import QLearn import time from numpy import zeros import random #import matplotlib.pyplot as plt #import matplotlib.animation as animation print 'Running Simulation - have q learner give us an action to take' #Init Environment and food sources env = Env(50) env.makeGradient() for i in range (0,10): env.makeFoodRandom() #env.makeFood(20,20); env.updateMap() #Create Animat #a = Animat(0,0,env, filename) # This should really be inside the animat class, since that's the one that'll make # a decision on what action to take. actions = ['north','south','east','west','stay','eat','pickup','drop']; #state = getState(); for i in range(0,300): env.tick() #a.tick()
import random import matplotlib.pyplot as plt import matplotlib.animation as animation print 'Running Simulation - Moving food around, picking up, dropping' # Deprecated filename = 'nn_precise_100k.p' size = 50; env1 = Env(size,0) env2 = Env(size,1); for i in range (0,20): env1.makeFoodRandom(); env2.makeFoodRandom(); env1.updateMap() env2.updateMap() animats = [Animat(25,25,[env1,env2],filename),Animat(10,40,[env1,env2],filename)]; stateMachine = ['notholding','notholding']; fig = plt.figure() ims = [] toEat = [random.randrange(0,2),random.randrange(0,2)]; toFollow = [0 if toEat == 1 else 1,0 if toEat == 1 else 1]; for i in range(0,1000): env1.tick() env2.tick() for index,a in enumerate(animats):
import time from numpy import zeros import random import matplotlib.pyplot as plt import matplotlib.animation as animation print 'Running Simulation - Find food' #filename = 'nn_scents_based.p' filename = 'nn_precise_100k.p' #Init Environment and food sources env = Env(50) for i in range(0, 10): env.makeFoodRandom() #env.makeFood(20,20); env.updateMap() #Create Animat ID = 1 a = Animat(0, 0, env, filename, 1) fig = plt.figure() ims = [] for i in range(0, 1000): print "Tick: " + str(i) env.tick() if a.alive: a.tickStateMachine() env.map[a.y, a.x] = env.map.max() im = plt.imshow(env.map) im.set_cmap('spectral')
import matplotlib matplotlib.use('TKAgg') import sys sys.path.append("..") from Environment.Env import Env from Animat.Animat import Animat import time from numpy import zeros import random import matplotlib.pyplot as plt import matplotlib.animation as animation print 'Running Simulation 3 - Gradient maker' mapSize = 100 food = Env(mapSize) #a = Animat.randomStart(mapSize,mapSize) food.makeGradient() print 'Made gradient.' for count in range(0,20): food.makeFoodRandom() print str(count)+' food made.' food.updateMap(); fig2 = plt.figure() plt.pcolor(food.map) plt.ion() plt.show()
matplotlib.use('TKAgg') import sys sys.path.append("..") from Environment.Env import Env from Animat.Animat import Animat import time from numpy import zeros import random import matplotlib.pyplot as plt import matplotlib.animation as animation print 'Running Simulation 3 - Gradient maker' mapSize = 100 food = Env(mapSize) #a = Animat.randomStart(mapSize,mapSize) food.makeGradient() print 'Made gradient.' for count in range(0, 20): food.makeFoodRandom() print str(count) + ' food made.' food.updateMap() fig2 = plt.figure() plt.pcolor(food.map) plt.ion() plt.show()