Exemple #1
0
def get_from_config(cfg):
    env_id = cfg["env_id"]
    if "bsuite" in env_id:
        from Environments import BSuiteWrapper
        env_name = env_id.split(" ")[-1]
        env = BSuiteWrapper(env_name)
        return GymEnvironment(env_id=None, env=env)

    return GymEnvironment(cfg["env_id"])
Exemple #2
0
def test_policy():
    cfg = {"rng": np.random}

    env = GymEnvironment("CartPole-v1")
    input_shape = env.get_policy_input_shape()
    output_shape = env.get_policy_output_shape()

    policy_instructions = \
        {
            "layers": [64, 64],
            "layer_functions": ['relu', 'relu'],
            "layer_extras": ['bn', 'bn'],
            "output_function": 'softmax',
            "output_extras": 'bn',
        }
    policy = FeedForward(input_shape, output_shape,
                         PolicyActionParsers.random_sample, cfg)
    policy.build_model(policy_instructions)

    env.reset()
    obs = env.get_random_obs()
    while not env.needs_reset:
        action = policy.get_action(obs)
        obs, rew = env.step(action)
        print("TOOK ACTION", action, "GOT REWARD", rew)

    print("POLICY TEST COMPLETE")
Exemple #3
0
def test_random_action():
    env = GymEnvironment("CartPole-v1")
    env.reset()
    action = env.get_random_action()
    print("GOT RANDOM ACTION", action)
    env.step(action)
    print("SUCCESSFULLY STEPPED ENV WITH ACTION", action)
Exemple #4
0
def test_build():
    env = GymEnvironment("CartPole-v1")
    print("BUILT CartPole-v1", "OBSERAVTION SHAPE:", env.observation_shape,
          "ACTION SHAPE:", env.action_shape)
Exemple #5
0
def test_seed():
    env = GymEnvironment("CartPole-v1")
    env.test_seeding()

    print("SEEDING TEST COMPLETE")
Exemple #6
0
def test_render():
    env = GymEnvironment("CartPole-v1")
    env.reset()
    while not env.needs_reset:
        env.step(env.get_random_action())
        env.render()
    env.close()
    print("RENDER TEST SUCCESSFUL!")
Exemple #7
0
def test_get_batch():
    env = GymEnvironment("CartPole-v1")
    env.reset()
    batch = env.get_random_batch(500)
    print("GOT BATCH OF SHAPE", batch.shape,
          "EXPECTED SHAPE WITH 500 ENTRIES OF", env.observation_shape)