def main(graph, fil, norm, permute, ss, epd, n_cv, flip, feat, feat_kwargs, ntda): """ All hyperprameter goes here. :param graph: graph dataset :param fil: filtration function :param norm: normalize or not :param permute: whether permute dgm :param ss: both sublevel and superlevel or not :param epd: include extended persistence or not :param n_cv: number of cross validation :return: """ global gs print('feat kwargs', feat_kwargs) db = get_tda_db() params = { 'graph': graph, 'fil': fil, 'norm': norm, 'permute': permute, 'ss': ss, 'epd': epd, 'n_cv': n_cv, 'flip': flip, 'feat': feat, 'ntda': ntda, 'feat_kwargs': feat_kwargs } if check_duplicate(db, params): return label_flag = dgms_dir_test(fil=fil, fil_d='sub', norm=norm, graph=graph)[1] # gs, labels = load_graphs(dataset=graph, labels_only=label_flag) # step 1 gs, labels = load_tugraphs( graph, labels_only=False ) # labels_only true means gs is None. Turned on for high speed # parallel # subdgms = gs2dgms(gs, n_jobs=-1, fil=fil, fil_d='sub', norm=norm, graph = graph, ntda = ntda, debug_flag=True) subdgms = gs2dgms_parallel(n_jobs=-1, fil=fil, fil_d='sub', norm=norm, graph=graph, ntda=ntda) supdgms = gs2dgms_parallel(n_jobs=-1, fil=fil, fil_d='sup', norm=norm, graph=graph, ntda=ntda) epddgms = gs2dgms_parallel(n_jobs=-1, fil=fil, one_hom=True, norm=norm, graph=graph, ntda=ntda) dgms = combine_dgms(subdgms, supdgms, epddgms, ss=ss, epd=epd, flip=flip) dgms = permute_dgms(dgms, permute_flag=permute) # old way dgms_summary(dgms) swdgms = dgms2swdgms(dgms) if feat == 'sw': print(feat_kwargs) k, _ = sw_parallel(swdgms, swdgms, parallel_flag=True, kernel_type='sw', **feat_kwargs) print(k.shape) cmargs = {'print_flag': 'off'} # confusion matrix clf = classifier(labels, labels, method='svm', n_cv=n_cv, kernel=k, **cmargs) clf.svm_kernel_(n_splits=10) elif feat == 'pi': # vector params = { 'bandwidth': 1.0, 'weight': (1, 1), 'im_range': [0, 1, 0, 1], 'resolution': [5, 5] } images = merge_dgms(subdgms, supdgms, epddgms, vectype='pi', ss=ss, epd=epd, **params) clf = classifier(images, labels, method='svm', n_cv=n_cv) clf.svm(n_splits=10) elif feat == 'pss': k, _ = sw_parallel(swdgms, swdgms, parallel_flag=True, kernel_type='pss', **feat_kwargs) # print(k.shape, k, np.max(k)) clf = classifier(labels, labels, method='svm', n_cv=n_cv, kernel=k) clf.svm_kernel_(n_splits=10) elif feat == 'wg': k, _ = sw_parallel(swdgms, swdgms, parallel_flag=True, kernel_type='wg', **feat_kwargs) print(k.shape) clf = classifier(labels, labels, method='svm', n_cv=n_cv, kernel=k) clf.svm_kernel_(n_splits=10) elif feat == 'pervec': cmargs = {'print_flag': 'on'} # confusion matrix pd_vector = dgms2vec(dgms, vectype='pervec', **feat_kwargs) clf = classifier(pd_vector, labels, method='svm', n_cv=n_cv, **cmargs) clf.svm(n_splits=10) elif feat == 'pf': k, _ = sw_parallel(swdgms, swdgms, parallel_flag=False, kernel_type='pf', **feat_kwargs) clf = classifier(labels, labels, method='svm', n_cv=n_cv, kernel=k) clf.svm_kernel_(n_splits=10) else: raise Exception('No such feat %s' % feat) print(clf.stat) print_line() return clf.stat
subdgms = gs2dgms_parallel(n_jobs=-1, fil=fil, fil_d='sub', norm=norm) supdgms = gs2dgms_parallel(n_jobs=-1, fil=fil, fil_d='sup', norm=norm) epddgms = gs2dgms_parallel(n_jobs=-1, fil=fil, one_hom=True, norm=norm) # serial # subdgms = gs2dgms(gs, fil=fil, fil_d='sub', norm=norm, one_hom=False) # step2 # TODO: need to add interface # supdgms = gs2dgms(gs, fil=fil, fil_d='sup', norm=norm, one_hom=False) # step2 # # epddgms = gs2dgms(gs, fil=fil, norm=norm, one_hom=True) # step2 # TODO dgms = combine_dgms(subdgms, supdgms, epddgms, args) dgms = permute_dgms(dgms, permute_flag=args.permute, permute_ratio=0.5) dgms_summary(dgms) # sw kernel swdgms = dgms2swdgms(dgms) kwargs = {'bw': args.bw, 'n_directions': 10, 'K': 1, 'p': 1} sw_kernel, _ = sw_parallel(swdgms, swdgms, parallel_flag=True, kernel_type='sw', **kwargs) print(sw_kernel.shape) clf = classifier(labels, labels, method='svm', n_cv=args.n_cv, kernel=sw_kernel) clf.svm_kernel_(n_splits=10) print(clf.stat)
# print(f'sanity dgm is {print_dgm(sanity_dgms[10])} \n') print(f'another fake dgm is {print_dgm(another_fake_dgms[10])} \n') all_dgms = true_dgms + fake_dgms indicator_labels = [1] * len(true_dgms) + [-1] * len(fake_dgms) if args.doublefake: all_dgms = fake_dgms + another_fake_dgms indicator_labels = [1] * len(fake_dgms) + [-1] * len(another_fake_dgms) all_dgms = dgms2swdgms(all_dgms) # classify true diagrams from fake ones feat_kwargs = {'n_directions': 10, 'bw': 1} k, _ = sw_parallel(all_dgms, all_dgms, parallel_flag=True, kernel_type='sw', **feat_kwargs) print(k.shape) cmargs = {'print_flag': 'off'} # confusion matrix clf = classifier(indicator_labels, indicator_labels, method='svm', n_cv=1, kernel=k, **cmargs) clf.svm_kernel_(n_splits=10) if not args.viz: sys.exit('-' * 50) feat_kwargs = {'n_directions': 10, 'bw': 1}
def main(graph, fil, norm, permute, ss, epd, n_cv, flip, feat, feat_kwargs): """ All hyperprameter goes here. :param graph: graph dataset :param fil: filtration function :param norm: normalize or not :param permute: whether permute dgm :param ss: both sublevel and superlevel or not :param epd: include extended persistence or not :param n_cv: number of cross validation :return: """ global gs print('kwargs', feat_kwargs) label_flag = dgms_dir_test(fil=fil, fil_d='sub', norm=norm, graph=graph)[1] # gs, labels = load_graphs(dataset=graph, labels_only=label_flag) # step 1 gs, labels = load_tugraphs(graph, labels_only=True) # parallel subdgms = gs2dgms_parallel(n_jobs=-1, fil=fil, fil_d='sub', norm=norm, graph=graph) supdgms = gs2dgms_parallel(n_jobs=-1, fil=fil, fil_d='sup', norm=norm, graph=graph) epddgms = gs2dgms_parallel(n_jobs=-1, fil=fil, one_hom=True, norm=norm, graph=graph) dgms = combine_dgms(subdgms, supdgms, epddgms, ss=ss, epd=epd, flip=flip) dgms = permute_dgms(dgms, permute_flag=permute, permute_ratio=0.5) dgms_summary(dgms) swdgms = dgms2swdgms(dgms) if feat == 'sw': print(feat_kwargs) k, _ = sw_parallel(swdgms, swdgms, parallel_flag=True, kernel_type='sw', **feat_kwargs) clf = classifier(labels, labels, method='svm', n_cv=n_cv, kernel=k) clf.svm_kernel_(n_splits=10) print(clf.stat) return clf.stat elif feat == 'pi': params = { 'bandwidth': 1.0, 'weight': (1, 1), 'im_range': [0, 1, 0, 1], 'resolution': [5, 5] } images = merge_dgms(subdgms, supdgms, epddgms, vectype='pi', ss=ss, epd=epd, **params) clf = classifier(images, labels, method='svm', n_cv=n_cv) clf.svm(n_splits=10) return clf.stat elif feat == 'pss': k, _ = sw_parallel(swdgms, swdgms, parallel_flag=False, kernel_type='pss', **feat_kwargs) print(k.shape, k, np.max(k)) clf = classifier(labels, labels, method='svm', n_cv=n_cv, kernel=k) clf.svm_kernel_(n_splits=10) print(clf.stat) return clf.stat elif feat == 'wg': k, _ = sw_parallel(swdgms, swdgms, parallel_flag=True, kernel_type='wg', **feat_kwargs) print(k.shape) clf = classifier(labels, labels, method='svm', n_cv=n_cv, kernel=k) clf.svm_kernel_(n_splits=10) print(clf.stat) return clf.stat elif feat == 'pdvector': pass
# viz fv value # val = dict(nx.get_node_attributes(gs[i], 'fv')).values() # plt.plot(val) # plt.title('q: %s, i: %s'%(q, i)) # plt.show() # sys.exit() print('Finish computing lapfeat') dgms = alldgms(gs, radius=float('inf'), dataset='', recompute_flag=True, method='serial', n=2 * n, zigzag=zigzag) # compute dgms in parallel print('Finish computing dgms') swdgms = dgms2swdgms(dgms) feat_kwargs = {'n_directions': 10, 'bw': 1} sw_kernel, _ = sw_parallel(swdgms, swdgms, kernel_type='sw', parallel_flag=True, **feat_kwargs) clf = classifier(np.zeros((len(labels), 10)), labels, method=None, kernel=sw_kernel) print(clf.svm_kernel_()) print(p, q, edge_kwargs)
gs2 = sbms(n=n, n1=75, n2=75, p=p, q=q) gs = gs2 + gs1 labels = [1] * n + [2] * n # node filtration is fiedler vector. # edge_kwargs = {'h': 0.3, 'edgefunc': 'edge_prob'} # for i in range(len(gs)): # g = gs[i] # lp = LaplacianEigenmaps(d=1) # lp.learn_embedding(g, weight='weight') # lapfeat = lp.get_embedding() # gs[i] = fil_strategy(g, lapfeat, method=fil_method, viz_flag=False, **edge_kwargs) # print('Finish computing lapfeat') # compute diagrams dgms = gs2dgms(gs, fil='deg', fil_d='sub', norm=True) # compute kernel and evaluation swdgms = dgms2swdgms(dgms) kwargs = {'bw': 1, 'n_directions': 10} sw_kernel, _ = sw_parallel(swdgms, swdgms, kernel_type='sw', parallel_flag=False, **kwargs) clf = classifier(np.zeros((len(labels), 10)), labels, method=None, kernel=sw_kernel) print(clf.svm_kernel_())