Exemple #1
0
                                 'Iter_%06d_model.ckpt' % total_iters))
                torch.save(
                    {
                        'iters': total_iters,
                        'net_state_dict': margin.state_dict()
                    },
                    os.path.join(save_dir,
                                 'Iter_%06d_margin.ckpt' % total_iters))

            # evaluate accuracy
            if total_iters % 3000 == 0:

                model.eval()
                for phase in ['LFW', 'CFP_FP', 'AgeDB30']:
                    featureLs, featureRs = getFeature(model,
                                                      dataloaders[phase],
                                                      device,
                                                      flip=args.flip)
                    ACCs, threshold = evaluation_10_fold(featureLs,
                                                         featureRs,
                                                         dataset[phase],
                                                         method=args.method)
                    print(
                        'Epoch {}/{},{} average acc:{:.4f} average threshold:{:.4f}'
                        .format(epoch, args.epoch - 1, phase,
                                np.mean(ACCs) * 100, np.mean(threshold)))
                    if best_acc[phase] <= np.mean(ACCs) * 100:
                        best_acc[phase] = np.mean(ACCs) * 100
                        best_iters[phase] = total_iters

                    with open(test_logging_file, 'a') as f:
                        f.write(
Exemple #2
0
                torch.save({
                    'iters': total_iters,
                    'net_state_dict': model.state_dict()},
                    os.path.join(save_dir, 'Iter_%06d_model.ckpt' % total_iters))
                torch.save({
                    'iters': total_iters,
                    'net_state_dict': margin.state_dict()},
                    os.path.join(save_dir, 'Iter_%06d_margin.ckpt' % total_iters))
            
            # evaluate accuracy
            if total_iters % 3000 == 0:
                
                model.eval()
                for phase in ['LFW', 'CFP_FP', 'AgeDB30']:                 
                    featureLs, featureRs = getFeature(model,best_arc, dataloaders[phase], "cuda:1", flip = args.flip,)
                    ACCs, threshold = evaluation_10_fold(featureLs, featureRs, dataset[phase], method = args.method)
                    print('Epoch {}/{},{} average acc:{:.4f} average threshold:{:.4f}'
                          .format(epoch, args.epoch-1, phase, np.mean(ACCs) * 100, np.mean(threshold)))
                    if best_acc[phase] <= np.mean(ACCs) * 100:
                        best_acc[phase] = np.mean(ACCs) * 100
                        best_iters[phase] = total_iters
                    
                    with open(test_logging_file, 'a') as f:
                        f.write('Epoch {}/{}, {} average acc:{:.4f} average threshold:{:.4f}'
                                .format(epoch, args.epoch-1, phase, np.mean(ACCs) * 100, np.mean(threshold))+'\n')
                    f.close()
                    
                model.train()
                        
    time_elapsed = time.time() - start