Exemple #1
0
    def __init__(self):
        """
        Load up the necessary sub-structures to be filled with
        the code that follows
        """
        self.Compressor = CompressorClass()

        #Outdoor coil is a Condenser in cooling mode and evaporator in heating mode
        self.Condenser = CondenserClass()
        self.Condenser.Fins = FinInputs()
        self.Evaporator = EvaporatorClass()
        self.Evaporator.Fins = FinInputs()

        self.CoolingCoil = CoolingCoilClass()
        self.CoolingCoil.Fins = FinInputs()
        self.Pump = PumpClass()
        #Add both types of internal heat exchangers
        self.CoaxialIHX = CoaxialHXClass()
        self.PHEIHX = PHEHXClass()
        self.LineSetSupply = LineSetClass()
        self.LineSetReturn = LineSetClass()

        #Make IHX an empty class for holding parameters common to PHE and Coaxial IHX
        class struct:
            pass

        self.IHX = struct()
Exemple #2
0
def Evaporator_DOE_HP(type='wCircuitry'):
    #define parameters for evaporator as used in DOE HP
    Evaporator=EvaporatorClass()
    
    
    Fins=FinInputs()
     
    #--------------------------------------
    #--------------------------------------
    #           Evaporator
    #           -> see Condenser and GUI for explanations
    #--------------------------------------
    #--------------------------------------
    Fins.Tubes.NTubes_per_bank=48
    Fins.Tubes.Nbank=2
    Fins.Tubes.Ncircuits=10
    Fins.Tubes.Ltube=in2m(105.) #measured fin pack length
    #tube diameters from D:\Purdue\CEC BERG PROJECT\bachc\components\heat pump\ACHP\25HCC560-FV4C006-Data.xlsx
    Fins.Tubes.OD=mm2m(7.3) #measured 25HCC560 (same for HNB560); data for HCC unit indicated 7mm, actually larger
    Fins.Tubes.ID=mm2m(6.3) #measured 25HCC560 (assuming same for HNB560); data for HCC unit didn't make sense
    Fins.Tubes.Pl=cm2m(2.)       #depth of each fin-sheet (measured)
    Fins.Tubes.Pt=in2m(0.83)   #48tubes, 40-1/8 total distance between first and last tube
    Fins.Fins.FPI=20 #from datasheet
    Fins.Fins.Pd=0.001  #since fins are lanced, this value is meaningless - tune to fit to data
    Fins.Fins.xf=0.001 
    Fins.Fins.t=mm2m(0.11)   #measurement with callipper, 
    Fins.Fins.k_fin=237 #Pure aluminum (Incropera, Sixth edition)
    Fins.Air.Vdot_ha=cfm2cms(4668) #high flow value of HNB960  D:\Purdue\DOE Project\HP-design\datasheets\HNB960A300.pdf
    #Fins.Air.Vdot_ha=cfm2cms(4209.0) #high flow value of HNB960
    Fins.Air.Tmean=C2K(8.33)  #update according to your requirement
    Fins.Air.Tdb=Fins.Air.Tmean
    Fins.Air.p=101.325      #Air pressure
    Fins.Air.RH=0.48
    Fins.Air.RHmean=0.48
    Fins.Air.FanPower=HP2W(1.0/5.0)  #rated HP according to HNB960 datasheet

     #now swap the evaporator against a multi circuited one
    if type=='MCE':
        from MultiCircuitEvaporator import MultiCircuitEvaporatorClass
        Evaporator=MultiCircuitEvaporatorClass() #use multi circuit evaporator
    elif type=='wCircuitry':
        Evaporator=MultiCircuitEvaporator_w_circuitryClass() #use multi circuit evaporator
    elif type=='standard':
        Evaporator=EvaporatorClass() #use "normal" evaporator
    else:
        print "unsupported evaporator type"
        raise
    Evaporator.Fins=Fins
    params={
         'Verbosity':0,
         'DT_sh':5.0,  #initial setting, update according to requirement
         'Ref':'R410A'
    }
    Evaporator.Update(**params)
    return Evaporator
Exemple #3
0
 def __init__(self):
     """
     Load up the necessary sub-structures to be filled with
     the code that follows
     """
     self.Compressor=CompressorClass()
     self.Condenser=CondenserClass()
     self.Condenser.Fins=FinInputs()
     self.Evaporator=EvaporatorClass()
     self.Evaporator.Fins=FinInputs()
     self.LineSetSupply=LineSetClass()
     self.LineSetReturn=LineSetClass()
Exemple #4
0
    0.0708,
    'psat_r':
    PropsSI('P', 'T', 282.0, 'Q', 1.0, 'R410A'),
    'Fins':
    FinsTubes,
    'FinsType':
    'WavyLouveredFins',  #Choose fin Type: 'WavyLouveredFins' or 'HerringboneFins'or 'PlainFins'
    'hin_r':
    PropsSI('H', 'P', PropsSI('P', 'T', 282.0, 'Q', 1.0, 'R410A'), 'Q', 0.15,
            'R410A'),  #*1000
    'Verbosity':
    0,
    'Backend':
    'HEOS'  #choose between: 'HEOS','TTSE&HEOS','BICUBIC&HEOS','REFPROP','SRK','PR'
}
Evap = EvaporatorClass(**kwargs)
Evap.Calculate()
print 'Evap Q=' + str(Evap.Q) + ' W'

#This uses the multi-circuited evaporator model but with no mal-distribution
kwargs = {
    'Ref':
    'R410A',
    'mdot_r':
    0.0708,
    'psat_r':
    PropsSI('P', 'T', 282.0, 'Q', 1.0, 'R410A'),
    'Fins':
    FinsTubes,
    'FinsType':
    'WavyLouveredFins',  #Choose fin Type: 'WavyLouveredFins' or 'HerringboneFins'or 'PlainFins'
Exemple #5
0
class DXCycleClass():
    def __init__(self):
        """
        Load up the necessary sub-structures to be filled with
        the code that follows
        """
        self.Compressor=CompressorClass()
        self.Condenser=CondenserClass()
        self.Condenser.Fins=FinInputs()
        self.Evaporator=EvaporatorClass()
        self.Evaporator.Fins=FinInputs()
        self.LineSetSupply=LineSetClass()
        self.LineSetReturn=LineSetClass()
    def OutputList(self):
        """
            Return a list of parameters for this component for further output
            
            It is a list of tuples, and each tuple is formed of items:
                [0] Description of value
                [1] Units of value
                [2] The value itself
        """
        Output_List=[]
        #append optional parameters, if applicable
        if hasattr(self,'TestName'):
            Output_List.append(('Name','N/A',self.TestName)) 
        if hasattr(self,'TestDescription'):
            Output_List.append(('Description','N/A',self.TestDescription))
        if hasattr(self,'TestDetails'):
            Output_List.append(('Details','N/A',self.TestDetails))
        Output_List_default=[                                                                       #default output list
            ('Charge','kg',self.Charge),
            ('Condensation temp (dew)','K',self.Tdew_cond),
            ('Evaporation temp (dew)','K',self.Tdew_evap),
            ('Condenser Subcooling','K',self.DT_sc),
            ('Primary Ref.','-',self.Ref),
            ('COP','-',self.COP),
            ('COSP','-',self.COSP),
            ('Net Capacity','W',self.Capacity),
            ('Net Power','W',self.Power),
            ('SHR','-',self.SHR),
            ('Imposed Variable','-',self.ImposedVariable),
         ]
        for i in range(0,len(Output_List_default)):                             #append default parameters to output list
            Output_List.append(Output_List_default[i])
        return Output_List

    def Calculate(self,DT_evap,DT_cond):
        """
        Inputs are differences in temperature [K] between HX air inlet temperature 
        and the dew temperature for the heat exchanger.
        
        Required Inputs:
            DT_evap: 
                Difference in temperature [K] between evaporator air inlet temperature and refrigerant dew temperature
            DT_cond:
                Difference in temperature [K] between condenser air inlet temperature and refrigeant dew temperature 
        """
        if self.Verbosity>1:
            print 'DTevap %7.4f DTcond %7.4f,' %(DT_evap,DT_cond)
        Tdew_cond=self.Condenser.Fins.Air.Tdb+DT_cond#the values (Tin_a,..) come from line 128ff
        Tdew_evap=self.Evaporator.Fins.Air.Tdb-DT_evap
        psat_cond=Props('P','T',Tdew_cond,'Q',1,self.Ref)
        psat_evap=Props('P','T',Tdew_evap,'Q',1,self.Ref)
        Tbubble_evap=Props('T','P',psat_evap,'Q',0,self.Ref)
        
        self.Tdew_cond=Tdew_cond
        self.Tdew_evap=Tdew_evap
        
        #If the user doesn't include the Mode, fail
        assert hasattr(self,'Mode')
        
        if self.Mode=='AC':
            if not hasattr(self.Compressor,'mdot_r') or self.Compressor.mdot_r<0.00001:
                # The first run of model, run the compressor just so you can get a preliminary value 
                # for the mass flow rate for the line set 
                params={               #dictionary -> key:value, e.g. 'key':2345,
                    'pin_r': psat_evap,   
                    'pout_r': psat_cond,
                    'Tin_r': Tdew_evap+self.Evaporator.DT_sh,
                    'Ref':  self.Ref
                }
                self.Compressor.Update(**params)
                self.Compressor.Calculate()
            
            params={
                'pin': psat_evap,
                'hin': Props('H','T',Tdew_evap+self.Evaporator.DT_sh,'P',psat_evap,self.Ref)*1000,
                'mdot': self.Compressor.mdot_r,
                'Ref':  self.Ref
            }
            self.LineSetReturn.Update(**params)
            self.LineSetReturn.Calculate()
            
            params={               #dictionary -> key:value, e.g. 'key':2345,
                'pin_r': psat_evap-self.DP_low,   
                'pout_r': psat_cond+self.DP_high,
                'Tin_r': TrhoPhase_ph(self.Ref,psat_evap,self.LineSetReturn.hout,Tbubble_evap,Tdew_evap)[0],
                'Ref':  self.Ref
            }
            self.Compressor.Update(**params)
            self.Compressor.Calculate()
            if self.Verbosity>1:
                print 'Comp DP H L',self.DP_low,self.DP_high
            
            params={
                'mdot_r': self.Compressor.mdot_r,
                'Tin_r': self.Compressor.Tout_r,
                'psat_r': psat_cond,
                'Ref': self.Ref
            }
            self.Condenser.Update(**params)
            self.Condenser.Calculate()
            
            params={
                'pin':psat_cond,
                'hin':self.Condenser.hout_r,
                'mdot':self.Compressor.mdot_r,
                'Ref':self.Ref
            }
            self.LineSetSupply.Update(**params)
            self.LineSetSupply.Calculate()
            
            params={
                'mdot_r': self.Compressor.mdot_r,
                'psat_r': psat_evap,
                'hin_r': self.LineSetSupply.hout,
                'Ref': self.Ref
            }
            self.Evaporator.Update(**params)
            self.Evaporator.Calculate()
            
            self.Charge=self.Condenser.Charge+self.Evaporator.Charge+self.LineSetSupply.Charge+self.LineSetReturn.Charge
            self.EnergyBalance=self.Compressor.CycleEnergyIn+self.Condenser.Q+self.Evaporator.Q
            
            resid=np.zeros((2))
            self.DP_HighPressure=self.Condenser.DP_r+self.LineSetSupply.DP
            self.DP_LowPressure=self.Evaporator.DP_r+self.LineSetReturn.DP
            resid[0]=self.Compressor.mdot_r*(self.LineSetReturn.hin-self.Evaporator.hout_r)
            
            if self.ImposedVariable=='Subcooling':
                resid[1]=self.Condenser.DT_sc-self.DT_sc_target    
            elif self.ImposedVariable=='Charge':
                resid[1]=self.Charge-self.Charge_target
            
            if self.Verbosity>1:
                print resid
            
            self.Capacity=self.Evaporator.Capacity
            self.Power=self.Compressor.W+self.Evaporator.Fins.Air.FanPower+self.Condenser.Fins.Air.FanPower
            self.COP=self.Evaporator.Q/self.Compressor.W
            self.COSP=self.Evaporator.Capacity/self.Power
            self.SHR=self.Evaporator.SHR
            self.DT_sc=self.Condenser.DT_sc
        
        elif self.Mode=='HP':            
            params={               #dictionary -> key:value, e.g. 'key':2345,
                'pin_r': psat_evap-self.DP_low*1,   
                'pout_r': psat_cond+self.DP_high*1,
                'Tin_r': Tdew_evap+self.Evaporator.DT_sh,
                'Ref':  self.Ref
            }
            self.Compressor.Update(**params)
            self.Compressor.Calculate()
            
            params={
                'pin': psat_cond,
                'hin': self.Compressor.hout_r,
                'mdot': self.Compressor.mdot_r,
                'Ref':  self.Ref
            }
            self.LineSetSupply.Update(**params)
            self.LineSetSupply.Calculate()
            
            params={
                'mdot_r': self.Compressor.mdot_r,
                'Tin_r': self.Compressor.Tout_r,
                'psat_r': psat_cond,
                'Ref': self.Ref
            }
            self.Condenser.Update(**params)
            self.Condenser.Calculate()
            
            params={
                'pin': psat_cond,
                'hin': self.Condenser.hout_r,
                'mdot': self.Compressor.mdot_r,
                'Ref': self.Ref
            }
            self.LineSetReturn.Update(**params)
            self.LineSetReturn.Calculate()
            
            params={
                'mdot_r': self.Compressor.mdot_r,
                'psat_r': psat_evap,
                'hin_r': self.LineSetReturn.hout,
                'Ref': self.Ref
            }
            self.Evaporator.Update(**params)
            self.Evaporator.Calculate()
            
            self.Charge=self.Condenser.Charge+self.Evaporator.Charge+self.LineSetSupply.Charge+self.LineSetReturn.Charge
            self.EnergyBalance=self.Compressor.CycleEnergyIn+self.Condenser.Q+self.Evaporator.Q
            
            resid=np.zeros((2))
            resid[0]=self.Compressor.mdot_r*(self.Compressor.hin_r-self.Evaporator.hout_r)
            
            if self.ImposedVariable=='Subcooling':
                resid[1]=self.Condenser.DT_sc-self.DT_sc_target    
            elif self.ImposedVariable=='Charge':
                resid[1]=self.Charge-self.Charge_target
            
            self.Capacity=-self.Condenser.Q+self.Condenser.Fins.Air.FanPower
            self.DT_sc=self.Condenser.DT_sc
            self.Power=self.Compressor.W+self.Evaporator.Fins.Air.FanPower+self.Condenser.Fins.Air.FanPower
            self.COP=-self.Condenser.Q/self.Compressor.W
            self.COSP=self.Capacity/self.Power
            self.SHR=self.Evaporator.SHR
            self.DP_HighPressure=self.Condenser.DP_r+self.LineSetSupply.DP
            self.DP_LowPressure=self.Evaporator.DP_r+self.LineSetReturn.DP
        else:
            ValueError("DX Cycle mode must be 'AC', or 'HP'")
        if self.Verbosity>1:
            print 'DTevap %7.4f DTcond %7.4f Qres % 12.6e DTsc: % 12.6e Charge %10.4f SC: %8.4f' %(DT_evap,DT_cond,resid[0],resid[1],self.Charge,self.Condenser.DT_sc)
        self.DT_evap=DT_evap
        self.DT_cond=DT_cond
        return resid
    
    def PreconditionedSolve(self):
        """
        Solver that will precondition by trying a range of DeltaT until the model
        can solve, then will kick into 2-D Newton Raphson solve
        
        The two input variables for the system solver are the differences in 
        temperature between the inlet air temperature of the heat exchanger and the
        dew temperature of the refrigerant.  This is important for refrigerant blends
        with temperature glide during constant-pressure evaporation or condensation.
        Good examples of common working fluid with glide would be R404A or R410A.
        """
        def OBJECTIVE_DXCycle(x):
            """
            A wrapper function to convert input vector for fsolve to the proper form for the solver
            """
            try:
                resids=self.Calculate(DT_evap=float(x[0]),DT_cond=float(x[1]))#,DP_low=float(x[2]),DP_high=float(x[3]))
            except ValueError:
                raise
            return resids
        
        # Use the preconditioner to determine a reasonably good starting guess
        DT_evap_init,DT_cond_init=DXPreconditioner(self)

        GoodRun=False
        while GoodRun==False:
            try:
                self.DP_low=0
                self.DP_high=0
                DP_converged=False        
                while DP_converged==False:
                    #Actually run the Newton-Raphson solver to get the solution
                    x=Broyden(OBJECTIVE_DXCycle,[DT_evap_init,DT_cond_init])
                    delta_low=abs(self.DP_low-abs(self.DP_LowPressure)/1000)
                    delta_high=abs(self.DP_high-abs(self.DP_HighPressure)/1000)
                    self.DP_low=abs(self.DP_LowPressure)/1000
                    self.DP_high=abs(self.DP_HighPressure)/1000
                    #Update the guess values based on last converged values
                    DT_evap_init=self.DT_evap
                    DT_cond_init=self.DT_cond
                    if delta_low<1 and delta_high<1:
                        DP_converged=True
                    if self.Verbosity>4:
                        print self.DP_HighPressure/1000,self.DP_LowPressure/1000,'DPHP'
                    GoodRun=True
            except AttributeError:
                # This will be a fatal error !! Should never have attribute error
                raise 
            except:
                print "--------------  Exception Caught ---------------- " 
                print "Error of type",sys.exc_info()[0]," is: " + sys.exc_info()[1].message
                raise
        
        if self.Verbosity>0:
            print 'Capacity: ', self.Capacity
            print 'COP: ',self.COP
            print 'COP (w/ both fans): ',self.COSP
            print 'SHR: ',self.SHR
            print 'UA_r_evap',self.Evaporator.UA_r
            print 'UA_a_evap',self.Evaporator.UA_a
            print 'UA_r_cond',self.Condenser.UA_r
            print 'UA_a_cond',self.Condenser.UA_a
Exemple #6
0
class SecondaryCycleClass():
    def __init__(self):
        """
        Load up the necessary sub-structures to be filled with
        the code that follows
        """
        self.Compressor=CompressorClass()
        
        #Outdoor coil is a Condenser in cooling mode and evaporator in heating mode
        self.Condenser=CondenserClass()
        self.Condenser.Fins=FinInputs()
        self.Evaporator=EvaporatorClass()
        self.Evaporator.Fins=FinInputs()
        
        self.CoolingCoil=CoolingCoilClass()
        self.CoolingCoil.Fins=FinInputs()
        self.Pump=PumpClass()
        #Add both types of internal heat exchangers
        self.CoaxialIHX=CoaxialHXClass()
        self.PHEIHX=PHEHXClass()
        self.LineSetSupply=LineSetClass()
        self.LineSetReturn=LineSetClass()
        #Make IHX an empty class for holding parameters common to PHE and Coaxial IHX
        class struct: pass
        self.IHX=struct()
        
    def OutputList(self):
        """
            Return a list of parameters for this component for further output
            
            It is a list of tuples, and each tuple is formed of items:
                [0] Description of value
                [1] Units of value
                [2] The value itself
        """
        return [
            ('Charge','kg',self.Charge),
            ('Condenser Subcooling','K',self.DT_sc),
            ('Primary Ref.','-',self.Ref),
            ('Secondary Ref.','-',self.SecLoopFluid),
            ('Imposed Variable','-',self.ImposedVariable),
            ('IHX Type','-',self.IHXType),
            ('COP','-',self.COP),
            ('COSP','-',self.COSP),
            ('Net Capacity','W',self.CoolingCoil.Capacity),
            ('Net Power','W',self.Power),
            ('SHR','-',self.SHR),
            ('Condensation temp (dew)','K',self.Tdew_cond),
            ('Evaporation temp (dew)','K',self.Tdew_evap),
         ]

    def Calculate(self,DT_evap,DT_cond,Tin_CC):
        """
        Inputs are differences in temperature [K] between HX air inlet temperature 
        and the dew temperature for the heat exchanger.
        
        Required Inputs:
            DT_evap: 
                Difference in temperature [K] between cooling coil air inlet temperature and refrigerant dew temperature
            DT_cond:
                Difference in temperature [K] between condenser air inlet temperature and refrigerant dew temperature
            Tin_CC:
                Inlet "glycol" temperature to line set feeding cooling coil   
        """
        if self.Verbosity>1:
            print 'Inputs: DTevap %7.4f DTcond %7.4f fT_IHX %7.4f'%(DT_evap,DT_cond,Tin_CC) 
        
        #Store the values to save on computation for later
        self.DT_evap=DT_evap
        self.DT_cond=DT_cond
        self.Tin_CC=Tin_CC
        
        #If the user doesn't include the Mode, set it to Air Conditioning 
        if not hasattr(self,'Mode'):
            self.Mode='AC'
            
        if self.Mode=='AC':
            self.Tdew_cond=self.Condenser.Fins.Air.Tdb+DT_cond
            self.Tdew_evap=self.CoolingCoil.Fins.Air.Tdb-DT_evap
        elif self.Mode=='HP':
            self.Tdew_cond=Tin_CC+DT_cond
            self.Tdew_evap=self.Evaporator.Fins.Air.Tdb-DT_evap
        else:
            raise ValueError('Mode must be AC or HP')
        
        psat_cond=Props('P','T',self.Tdew_cond,'Q',1,self.Ref)
        psat_evap=Props('P','T',self.Tdew_evap,'Q',1,self.Ref)
        self.Tbubble_evap=Props('T','P',psat_evap,'Q',0,self.Ref)
        self.Tbubble_cond=Props('T','P',psat_cond,'Q',0,self.Ref)
        
        if self.Mode=='AC':
            
            params={               #dictionary -> key:value, e.g. 'key':2345,
                'pin_r': psat_evap+self.DP_low,   
                'pout_r': psat_cond-self.DP_high,
                'Tin_r': self.Tdew_evap+self.PHEIHX.DT_sh, # TrhoPhase_ph(self.Ref,psat_evap,self.LineSetReturn.hout,self.Tbubble_evap,self.Tdew_evap)[0],
                'Ref':  self.Ref
            }
            self.Compressor.Update(**params)
            self.Compressor.Calculate()
            
            params={
                'mdot_r': self.Compressor.mdot_r,
                'Tin_r': self.Compressor.Tout_r,
                'psat_r': psat_cond,
                'Ref': self.Ref
            }
            self.Condenser.Update(**params)
            self.Condenser.Calculate()
            
            
            params={
                'mdot': self.Pump.mdot_g,
                'hin': Props('H','T',Tin_CC,'P',self.Pump.pin_g,self.SecLoopFluid)*1000,
            }
            self.LineSetSupply.Update(**params)
            self.LineSetSupply.Calculate()
            
            #Now run CoolingCoil to predict inlet glycol temperature to IHX
            params={
                'mdot_g': self.Pump.mdot_g,
                'Tin_g': self.LineSetSupply.Tout,
            }
            self.CoolingCoil.Update(**params)
            self.CoolingCoil.Calculate()
            
            params={
                'mdot': self.Pump.mdot_g,
                'hin': Props('H','T',self.CoolingCoil.Tout_g,'P',self.Pump.pin_g,self.SecLoopFluid)*1000,
            }
            self.LineSetReturn.Update(**params)
            self.LineSetReturn.Calculate()
            
            if self.IHXType=='Coaxial':
                params={
                    'mdot_g': self.Pump.mdot_g,
                    'Tin_g': self.CoolingCoil.Tout_g,
                    'pin_r': psat_evap,
                    'hin_r': self.Condenser.hout_r,
                    'Ref_r': self.Ref,
                    'mdot_r': self.Compressor.mdot_r,
                }
                self.CoaxialIHX.Update(**params)
                self.CoaxialIHX.Calculate()
                self.IHX.Charge_r=self.CoaxialIHX.Charge_r
                self.IHX.Q=self.CoaxialIHX.Q
                self.IHX.Tout_g=self.CoaxialIHX.Tout_g
                self.IHX.DP_g=self.CoaxialIHX.DP_g
                self.IHX.hout_r=self.CoaxialIHX.hout_r
                self.IHX.DP_r=self.CoaxialIHX.DP_r
                if hasattr(self,'PHEIHX'):
                    del self.PHEIHX
            elif self.IHXType=='PHE':
                params={
                    'mdot_h': self.Pump.mdot_g,
                    'hin_h': Props('H','T',self.CoolingCoil.Tout_g,'P',self.PHEIHX.pin_h,self.SecLoopFluid)*1000,
                    
                    'mdot_c': self.Compressor.mdot_r,
                    'pin_c': psat_evap,
                    'hin_c': self.Condenser.hout_r,
                }
                self.PHEIHX.Update(**params)
                self.PHEIHX.Calculate()
                self.IHX.Charge_r=self.PHEIHX.Charge_c
                self.IHX.Q=self.PHEIHX.Q
                self.IHX.Tout_g=self.PHEIHX.Tout_h
                self.IHX.DP_g=self.PHEIHX.DP_h
                self.IHX.DP_r=self.PHEIHX.DP_c
                self.IHX.hout_r=self.PHEIHX.hout_c
                if hasattr(self,'CoaxialIHX'):
                    del self.CoaxialIHX
            
            params={
                'DP_g': self.IHX.DP_g+self.CoolingCoil.DP_g+self.LineSetSupply.DP+self.LineSetReturn.DP,
                'Tin_g': self.CoolingCoil.Tout_g
            }
            self.Pump.Update(**params)
            self.Pump.Calculate()
            
            self.Charge=self.Condenser.Charge+self.IHX.Charge_r
            self.EnergyBalance=self.Compressor.CycleEnergyIn+self.Condenser.Q+self.IHX.Q
            
            self.DT_sc=(Props('H','T',self.Tbubble_cond,'Q',0,self.Ref)*1000-self.Condenser.hout_r)/(Props('C','T',self.Tbubble_cond,'Q',0,self.Ref)*1000)
            deltaH_sc=self.Compressor.mdot_r*(Props('H','T',self.Tbubble_cond,'Q',0,self.Ref)*1000-Props('H','T',self.Tbubble_cond-self.DT_sc_target,'P',psat_cond,self.Ref)*1000)
            
#            ## Plot a p-h plot
#            Ph(self.Ref,hbounds=(100,500))
#            pylab.plot([self.Compressor.hin_r/1000,self.Compressor.hout_r/1000,self.Condenser.hout_r/1000,self.PHEIHX.hin_c/1000,self.Compressor.hin_r/1000],[psat_evap,psat_cond,psat_cond,psat_evap,psat_evap])
#            pylab.show()
            
            resid=np.zeros((3))
            resid[0]=self.Compressor.mdot_r*(self.Compressor.hin_r-self.IHX.hout_r)
            
            if self.ImposedVariable=='Subcooling':
                resid[1]=self.Condenser.DT_sc-self.DT_sc_target    
            elif self.ImposedVariable=='Charge':
                resid[1]=self.Charge-self.Charge_target
#            resid[2]=self.IHX.Q-self.CoolingCoil.Q+self.Pump.W

            self.residSL=self.IHX.Q-self.CoolingCoil.Q+self.Pump.W+self.LineSetSupply.Q+self.LineSetReturn.Q
            resid[2]=self.residSL
            
            
            
            if self.Verbosity>7:
                print 'Wcomp % 12.6e Qcond: % 12.6e QPHE %10.4f ' %(self.Compressor.W,self.Condenser.Q,self.IHX.Q)
            if self.Verbosity>1:
                print 'Qres % 12.6e Resid2: % 12.6e ResSL %10.4f  Charge %10.4f SC: %8.4f' %(resid[0],resid[1],self.residSL,self.Charge,self.Condenser.DT_sc)
                
            self.Capacity=self.CoolingCoil.Capacity
            self.COP=self.CoolingCoil.Q/self.Compressor.W
            self.COSP=self.CoolingCoil.Capacity/(self.Compressor.W+self.Pump.W+self.CoolingCoil.Fins.Air.FanPower+self.Condenser.Fins.Air.FanPower)
            self.SHR=self.CoolingCoil.SHR
            self.Power=self.Compressor.W+self.Pump.W+self.CoolingCoil.Fins.Air.FanPower+self.Condenser.Fins.Air.FanPower
            self.DP_high_Model=self.Condenser.DP_r #[Pa]
            self.DP_low_Model=self.IHX.DP_r #[Pa]
        elif self.Mode=='HP':
            if psat_evap+self.DP_low<0:
                raise ValueError('Compressor inlet pressure less than zero ['+str(psat_evap+self.DP_low)+' kPa] - is low side pressure drop too high?')
            params={               #dictionary -> key:value, e.g. 'key':2345,
                'pin_r': psat_evap+self.DP_low,   
                'pout_r': psat_cond-self.DP_high,
                'Tin_r': self.Tdew_evap+self.Evaporator.DT_sh, # TrhoPhase_ph(self.Ref,psat_evap,self.LineSetReturn.hout,self.Tbubble_evap,self.Tdew_evap)[0],
                'Ref':  self.Ref
            }
            self.Compressor.Update(**params)
            self.Compressor.Calculate()
            
            params={
                'mdot': self.Pump.mdot_g,
                'hin': Props('H','T',Tin_CC,'P',self.Pump.pin_g,self.SecLoopFluid)*1000,
            }
            self.LineSetSupply.Update(**params)
            self.LineSetSupply.Calculate()
            
            #Now run CoolingCoil to predict inlet glycol temperature to IHX
            params={
                'mdot_g': self.Pump.mdot_g,
                'Tin_g': self.LineSetSupply.Tout,
            }
            self.CoolingCoil.Update(**params)
            self.CoolingCoil.Calculate()
            
            params={
                'mdot': self.Pump.mdot_g,
                'hin': Props('H','T',self.CoolingCoil.Tout_g,'P',self.Pump.pin_g,self.SecLoopFluid)*1000,
            }
            self.LineSetReturn.Update(**params)
            self.LineSetReturn.Calculate()
            
            params={
                'mdot_h': self.Compressor.mdot_r,
                'hin_h': self.Compressor.hout_r,
                'pin_h': psat_cond,
                
                'mdot_c': self.Pump.mdot_g,
                'hin_c': Props('H','T',self.LineSetReturn.Tout,'P',self.PHEIHX.pin_c,self.SecLoopFluid)*1000,
            }
            self.PHEIHX.Update(**params)
            self.PHEIHX.Calculate()
            
            params={
                'mdot_r': self.Compressor.mdot_r,
                'psat_r': psat_evap,
                'hin_r': self.PHEIHX.hout_h,
                'Ref': self.Ref
            }
            self.Evaporator.Update(**params)
            self.Evaporator.Calculate()
            
            params={
                'DP_g': self.PHEIHX.DP_c+self.CoolingCoil.DP_g,
                'Tin_g': self.CoolingCoil.Tout_g
            }
            self.Pump.Update(**params)
            self.Pump.Calculate()
            
            self.Charge=self.Evaporator.Charge+self.PHEIHX.Charge_h
            
            #Calculate an effective subcooling amount by deltah/cp_satL
            #Can be positive or negative (negative is quality at outlet
            self.DT_sc=self.PHEIHX.DT_sc_h#(Props('H','T',self.Tbubble_cond,'Q',0,self.Ref)*1000-self.PHEIHX.hout_h)/(Props('C','T',self.Tbubble_cond,'Q',0,self.Ref)*1000)
            deltaH_sc=self.Compressor.mdot_r*(Props('H','T',self.Tbubble_cond,'Q',0,self.Ref)*1000-Props('H','T',self.Tbubble_cond-self.DT_sc_target,'P',psat_cond,self.Ref)*1000)
            
            resid=np.zeros((3))
            resid[0]=self.Compressor.mdot_r*(self.Compressor.hin_r-self.Evaporator.hout_r)
            
            if self.ImposedVariable=='Subcooling':
                resid[1]=self.DT_sc-self.DT_sc_target
            elif self.ImposedVariable=='Charge':
                resid[1]=self.Charge-self.Charge_target
            self.residSL=self.PHEIHX.Q+self.CoolingCoil.Q+self.Pump.W+self.LineSetSupply.Q+self.LineSetReturn.Q
            resid[2]=self.residSL
            
            if self.Verbosity>1:
                print 'Qres % 12.6e Resid2: % 12.6e ResSL %10.4f Charge %10.4f SC: %8.4f' %(resid[0],resid[1],self.residSL,self.Charge,self.DT_sc)
                
            self.Capacity=-self.CoolingCoil.Q+self.CoolingCoil.Fins.Air.FanPower
            self.COP=-self.CoolingCoil.Q/self.Compressor.W
            self.COSP=self.Capacity/(self.Compressor.W+self.Pump.W+self.CoolingCoil.Fins.Air.FanPower+self.Evaporator.Fins.Air.FanPower)
            self.Power=self.Compressor.W+self.Pump.W+self.CoolingCoil.Fins.Air.FanPower+self.Evaporator.Fins.Air.FanPower
            self.SHR=-self.CoolingCoil.SHR
            self.DP_high_Model=self.PHEIHX.DP_h #[Pa]
            self.DP_low_Model=self.Evaporator.DP_r #[Pa]
        self.DT_evap=DT_evap
        self.DT_cond=DT_cond   
        return resid

    def PreconditionedSolve(self,PrecondValues=None):
        '''
        PrecondValues = dictionary of values DT_evap, DT_cond and Tin_CC
        '''
        
        def OBJECTIVE(x):
            """
            Takes the place of a lambda function since lambda functions do not bubble error properly
            """
            return self.Calculate(x[0],x[1],x[2])
        def OBJECTIVE2(x,Tin):
            """
            Takes the place of a lambda function since lambda functions do not bubble error properly
            """
            return self.Calculate(x[0],x[1],Tin)
        def OBJECTIVE_SL(Tin_CC):
            """
            Objective function for the inner loop of the vapor compression system
            
            Using the MultiDimNewtRaph function will re-evaluate the Jacobian at 
            every step.  Slower, but more robust since the solution surfaces aren't
            smooth enough
            
            Note: This function is not currently used!
            """
            x=MultiDimNewtRaph(OBJECTIVE2,[self.DT_evap,self.DT_cond],args=(Tin_CC,))
   
            # Update the guess values for Delta Ts starting 
            # at the third step (after at least one update away 
            # from the boundaries)
            if self.OBJ_SL_counter>=0:
                self.DT_evap=x[0]
                self.DT_cond=x[1]
                pass
            self.OBJ_SL_counter+=1
            return self.residSL
            
        def PrintDPs():
            print 'DP_LP :: Input:',self.DP_low,'kPa / Model calc:',self.DP_low_Model/1000,'kPa'
            print 'DP_HP :: Input:',self.DP_high,'kPa / Model calc:',self.DP_high_Model/1000,'kPa'         
        
        #Some variables need to be initialized
        self.DP_low=0 #The actual low-side pressure drop to be used in kPa
        self.DP_high=0 #The actual low-side pressure drop to be used in kPa
        self.OBJ_SL_counter=0
        
        #Run the preconditioner to get guess values for the temperatures
        if PrecondValues is None:
            self.DT_evap,self.DT_cond,Tin_CC=SecondaryLoopPreconditioner(self)
        else:
            self.DT_evap=PrecondValues['DT_evap']
            self.DT_cond=PrecondValues['DT_cond']
            Tin_CC=PrecondValues['Tin_CC']
            
        
        #Remove the other, non-used IHX class if found
        if self.IHXType=='PHE':
            if hasattr(self,'CoaxialIHX'):
                del self.CoaxialIHX
        else:
            if hasattr(self,'PHEIHX'):
                del self.PHEIHX
            
        #Remove the condenser if in heating mode and condenser found
        if self.Mode=='HP':
            if hasattr(self,'Condenser'):
                del self.Condenser
        iter=1
        max_error_DP=999
        #Outer loop with a more relaxed convergence criterion
        while max_error_DP>0.5:
            iter_inner=1
            #Inner loop to determine pressure drop for high and low sides
            while max_error_DP>0.05 and iter_inner<10:
                
                #Run to calculate the pressure drop as starting point
                OBJECTIVE([self.DT_evap,self.DT_cond,Tin_CC])
                
                #Calculate the max error
                max_error_DP=max([abs(self.DP_low_Model/1000-self.DP_low),abs(self.DP_high_Model/1000-self.DP_high)])
                
                if self.Verbosity>0:
                    PrintDPs()
                    print 'Max pressure drop error [inner loop] is',max_error_DP,'kPa'
                    
                #Update the pressure drop terms
                self.DP_low=self.DP_low_Model/1000
                self.DP_high=self.DP_high_Model/1000
                
                iter_inner+=1
                
            if self.Verbosity > 0:
                print "Done with the inner loop on pressure drop"
                
            # Use Newton-Raphson solver
            (self.DT_evap,self.DT_cond,Tin_CC)=MultiDimNewtRaph(OBJECTIVE,[self.DT_evap,self.DT_cond,Tin_CC],dx=0.1)
            
            #Calculate the error
            max_error_DP=max([abs(self.DP_low_Model/1000-self.DP_low),abs(self.DP_high_Model/1000-self.DP_high)])
            
            if self.Verbosity>0:
                PrintDPs()    
                print 'Max pressure drop error [outer loop] is',max_error_DP,'kPa'
        
        if self.Verbosity>1:
            print 'Capacity: ', self.Capacity
            print 'COP: ',self.COP
            print 'COP (w/ both fans): ',self.COSP
            print 'SHR: ',self.SHR
        return
    def Calculate(self):
        #Check that the length of lists of mdot_r and FinsTubes.Air.Vdot_ha
        #match the number of circuits or are all equal to 1 (standard evap)
        Ncircuits = int(self.Fins.Tubes.Ncircuits)

        # Make Ncircuits copies of evaporator classes defined
        #  by the inputs to the MCE superclass
        EvapDict = self.__dict__
        self.Evaps = []
        for i in range(Ncircuits):
            # Make a deep copy to break all the links between the Fins structs
            # of each of the evaporator instances
            ED = copy.deepcopy(EvapDict)
            #Create new evaporator instanciated with new deep copied dictionary
            E = EvaporatorClass(**ED)
            #Add to list of evaporators
            self.Evaps.append(E)

        #Upcast single values to lists, and convert numpy arrays to lists
        self.Fins.Air.Vdot_ha = np.atleast_1d(self.Fins.Air.Vdot_ha).tolist()
        self.mdot_r = np.atleast_1d(self.mdot_r).tolist()

        if Ncircuits != len(self.mdot_r) and len(self.mdot_r) > 1:
            print "Problem with length of vector for mdot_r for MCE"
        else:
            if len(self.mdot_r) == 1:  #Single value passed in for mdot_r
                if hasattr(self, 'mdot_r_coeffs'):
                    if len(self.mdot_r_coeffs) != Ncircuits:
                        raise AttributeError("Size of array mdot_r_coeffs: " +
                                             str(len(self.mdot_r_coeffs)) +
                                             " does not equal Ncircuits: " +
                                             str(Ncircuits))
                    elif abs(np.sum(self.mdot_r_coeffs) -
                             1) >= 100 * np.finfo(float).eps:
                        raise AttributeError(
                            "mdot_r_coeffs must sum to 1.0.  Sum *100000 is: "
                            + str(100000 * np.sum(self.mdot_r_coeffs)))
                    else:
                        # A vector of weighting factors multiplying the total mass flow rate is provided with the right length
                        for i in range(Ncircuits):
                            self.Evaps[i].mdot_r = self.mdot_r[
                                -1] * self.mdot_r_coeffs[i]
                else:
                    # Refrigerant flow is evenly distributed between circuits,
                    # give each evaporator an equal portion of the refrigerant
                    for i in range(Ncircuits):
                        self.Evaps[i].mdot_r = self.mdot_r[-1] / Ncircuits
            else:
                for i in range(Ncircuits):
                    self.Evaps[i].mdot_r = self.mdot_r[i]

        # Deal with the possibility that the quality might be varied among circuits
        if hasattr(self, 'mdot_v_coeffs'):
            if len(self.mdot_v_coeffs) != Ncircuits:
                raise AttributeError("Size of array mdot_v_coeffs: " +
                                     str(len(self.mdot_v_coeffs)) +
                                     " does not equal Ncircuits: " +
                                     str(Ncircuits))
            elif abs(np.sum(self.mdot_v_coeffs) -
                     1) >= 10 * np.finfo(float).eps:
                raise AttributeError(
                    "mdot_v_coeffs must sum to 1.0.  Sum is: " +
                    str(np.sum(self.mdot_v_coeffs)))
            else:
                hsatL = PropsSI('H', 'P', self.psat_r, 'Q', 0.0, self.Ref)
                hsatV = PropsSI('H', 'P', self.psat_r, 'Q', 1.0, self.Ref)
                x_inlet = (self.hin_r - hsatL) / (hsatV - hsatL)
                mdot_v = x_inlet * sum(self.mdot_r)
                for i in range(Ncircuits):
                    mdot_v_i = self.mdot_v_coeffs[i] * mdot_v
                    x_i = mdot_v_i / self.Evaps[i].mdot_r
                    self.Evaps[i].hin_r = PropsSI('H', 'P', self.psat_r, 'Q',
                                                  x_i, self.Ref)

        #For backwards compatibility, if the coefficients are provided in the FinInputs class, copy them to the base class
        if hasattr(self.Fins.Air, 'Vdot_ha_coeffs'):
            self.Vdot_ha_coeffs = self.Fins.Air.Vdot_ha_coeffs
            print "Warning: please put the vector Vdot_ha_coeffs in the base MCE class, accesssed as MCE.Vdot_ha_coeffs"

        if Ncircuits != len(self.Fins.Air.Vdot_ha) and len(
                self.Fins.Air.Vdot_ha) > 1:
            print "Problem with length of vector for Vdot_ha for MCE"
        else:
            if len(self.Fins.Air.Vdot_ha) == 1:
                if hasattr(self, 'Vdot_ha_coeffs'):
                    if len(self.Vdot_ha_coeffs) != Ncircuits:
                        raise AttributeError("Size of array Vdot_ha_coeffs: " +
                                             str(len(self.Vdot_ha_coeffs)) +
                                             " does not equal Ncircuits: " +
                                             str(Ncircuits))
                    elif abs(np.sum(self.Vdot_ha_coeffs) -
                             1) >= 10 * np.finfo(float).eps:
                        raise AttributeError(
                            "Vdot_ha_coeffs does not sum to 1.0! Sum is: " +
                            str(np.sum(self.Vdot_ha_coeffs)))
                    else:
                        # A vector of factors multiplying the total volume flow rate is provided
                        for i in range(Ncircuits):
                            self.Evaps[
                                i].Fins.Air.Vdot_ha = self.Fins.Air.Vdot_ha[
                                    -1] * self.Vdot_ha_coeffs[i]
                else:
                    # Air flow is evenly distributed between circuits,
                    # give each circuit an equal portion of the air flow
                    for i in range(Ncircuits):
                        self.Evaps[i].Fins.Air.Vdot_ha = self.Fins.Air.Vdot_ha[
                            -1] / Ncircuits
            else:
                for i in range(Ncircuits):
                    self.Evaps[i].Fins.Air.Vdot_ha = self.Fins.Air.Vdot_ha[i]

        # Distribute the tubes of the bank among the different circuits
        # If Tubes per bank is divisible by the number of circuits, all the
        # circuits have the same number of tubes per bank

        # The circuits are ordered from fewer to more if they are not evenly distributed
        NTubes_min = int(floor(self.Fins.Tubes.NTubes_per_bank / Ncircuits))
        NTubes_max = int(ceil(self.Fins.Tubes.NTubes_per_bank / Ncircuits))

        if NTubes_min == NTubes_max:
            #If evenly divisible, use the tubes per circuit from the division
            A = Ncircuits
        else:
            # Total number of tubes per bank is given by
            A = (self.Fins.Tubes.NTubes_per_bank -
                 Ncircuits * NTubes_max) / (NTubes_min - NTubes_max)

        for i in range(Ncircuits):
            if i + 1 <= A:
                self.Evaps[i].Fins.Tubes.NTubes_per_bank = NTubes_min
            else:
                self.Evaps[i].Fins.Tubes.NTubes_per_bank = NTubes_max

        for i in range(Ncircuits):
            self.Evaps[i].Fins.Tubes.Ncircuits = 1
            #Actually run each Evaporator
            self.Evaps[i].Calculate()

        #Collect the outputs from each of the evaporators individually
        #Try to mirror the outputs of each of the evaporators
        self.Q = np.sum([self.Evaps[i].Q for i in range(Ncircuits)])
        self.Charge = np.sum([self.Evaps[i].Charge for i in range(Ncircuits)])
        self.Charge_superheat = np.sum(
            [self.Evaps[i].Charge_superheat for i in range(Ncircuits)])
        self.Charge_2phase = np.sum(
            [self.Evaps[i].Charge_2phase for i in range(Ncircuits)])
        self.DP_r = np.mean([self.Evaps[i].DP_r
                             for i in range(Ncircuits)])  #simplified
        self.DP_r_superheat = np.mean([
            self.Evaps[i].DP_r_superheat for i in range(Ncircuits)
        ])  #simplified
        self.DP_r_2phase = np.mean(
            [self.Evaps[i].DP_r_2phase for i in range(Ncircuits)])  #simplified
        self.Tin_r = np.mean([self.Evaps[i].Tin_r
                              for i in range(Ncircuits)])  #simplified
        self.h_r_superheat = np.mean([
            self.Evaps[i].h_r_superheat for i in range(Ncircuits)
        ])  #simplified, really should consider flowrate
        self.h_r_2phase = np.mean([
            self.Evaps[i].h_r_2phase for i in range(Ncircuits)
        ])  #simplified, really should consider flowrate
        self.w_superheat = np.sum(
            [self.Evaps[i].w_superheat
             for i in range(Ncircuits)]) / float(Ncircuits)
        self.w_2phase = np.sum(
            [self.Evaps[i].w_2phase
             for i in range(Ncircuits)]) / float(Ncircuits)
        self.hout_r = 0.0
        for i in range(Ncircuits):
            self.hout_r += self.Evaps[i].hout_r * self.Evaps[i].mdot_r
        self.hout_r = (self.hout_r / sum(self.mdot_r))
        self.Tin_a = self.Evaps[
            0].Fins.Air.Tdb  #assuming equal temperature for all circuits
        self.Tout_a = 0.0
        for i in range(Ncircuits):
            self.Tout_a += self.Evaps[i].Tout_a * self.Evaps[i].Fins.Air.Vdot_ha
        self.Tout_a = (self.Tout_a / sum(self.Fins.Air.Vdot_ha))
        Pout_r = self.psat_r + self.DP_r / 1.0
        hsatV_out = PropsSI('H', 'P', Pout_r, 'Q', 1.0, self.Ref)
        hsatL_out = PropsSI('H', 'P', Pout_r, 'Q', 0.0, self.Ref)
        if self.hout_r > hsatV_out:
            self.Tout_r = PropsSI('T', 'H', self.hout_r, 'P', Pout_r,
                                  self.Ref)  #superheated temperature at outlet
        else:
            xout_r = ((self.hout_r - hsatL_out) / (hsatV_out - hsatL_out))
            self.Tout_r = PropsSI(
                'T', 'P', Pout_r, 'Q', xout_r,
                self.Ref)  #saturated temperature at outlet quality
        self.Capacity = np.sum([self.Evaps[i].Q for i in range(Ncircuits)
                                ]) - self.Fins.Air.FanPower
        self.SHR = np.mean([self.Evaps[i].SHR for i in range(Ncircuits)])
        self.UA_a = np.sum([self.Evaps[i].UA_a for i in range(Ncircuits)])
        self.UA_r = np.sum([self.Evaps[i].UA_r for i in range(Ncircuits)])
        self.Q_superheat = np.sum(
            [self.Evaps[i].Q_superheat for i in range(Ncircuits)])
        self.Q_2phase = np.sum(
            [self.Evaps[i].Q_2phase for i in range(Ncircuits)])
        #Convert back to a single value for the overall evaporator
        self.Fins.Air.Vdot_ha = float(self.Fins.Air.Vdot_ha[-1])
        if self.Verbosity > 0:
            print chr(127),  #progress bar