Exemple #1
0
def read_attributes(path):
    print("Reading execution attributes from ", path)
    attr = ExecutionAttribute()

    lines = [line.rstrip('\n') for line in open(path)]

    attr.seq = int(lines[0].split("=", 1)[1])
    attr.img_width = int(lines[1].split("=", 1)[1])
    attr.img_height = int(lines[2].split("=", 1)[1])
    attr.path = lines[3].split("=", 1)[1]
    attr.summ_basename = lines[4].split("=", 1)[1]
    attr.epochs = int(lines[5].split("=", 1)[1])
    attr.batch_size = int(lines[6].split("=", 1)[1])
    attr.train_data_dir = lines[7].split("=", 1)[1]
    attr.validation_data_dir = lines[8].split("=", 1)[1]
    attr.test_data_dir = lines[9].split("=", 1)[1]
    attr.steps_train = int(lines[10].split("=", 1)[1])
    attr.steps_valid = int(lines[11].split("=", 1)[1])
    attr.steps_test = int(lines[12].split("=", 1)[1])
    attr.architecture = lines[13].split("=", 1)[1]
    attr.curr_basename = lines[14].split("=", 1)[1]

    return attr
Exemple #2
0
SUMMARY_PATH = "/mnt/data/results"
# SUMMARY_PATH="c:/temp/results"
# SUMMARY_PATH="/tmp/results"
NETWORK_FORMAT = "Unimodal"
IMAGE_FORMAT = "2D"
SUMMARY_BASEPATH = create_results_dir(SUMMARY_PATH, NETWORK_FORMAT, IMAGE_FORMAT)

# how many times to execute the training/validation/test cycle
CYCLES = 20

#
# Execution Attributes
attr = ExecutionAttribute()

# dimensions of our images.
attr.img_width, attr.img_height = 96, 96

# network parameters
# attr.path='C:/Users/hp/Downloads/cars_train'
# attr.path='/home/amenegotto/dataset/2d/sem_pre_proc_mini/
attr.path = '/mnt/data/image/2d/com_pre_proc/'
attr.summ_basename = get_base_name(SUMMARY_BASEPATH)
attr.s3_path = NETWORK_FORMAT + '/' + IMAGE_FORMAT
attr.epochs = 100
attr.batch_size = 128
attr.set_dir_names()

if K.image_data_format() == 'channels_first':
    input_s = (3, attr.img_width, attr.img_height)
else:
    input_s = (attr.img_width, attr.img_height, 3)
Exemple #3
0
attr.path = '/mnt/data/image/2d/sem_pre_proc'
attr.set_dir_names()
attr.batch_size = 128  # try 4, 8, 16, 32, 64, 128, 256 dependent on CPU/GPU memory capacity (powers of 2 values).
attr.epochs = 500

# how many times to execute the training/validation/test cycle
CYCLES = 1

for i in range(0, CYCLES):

    # create the base pre-trained model
    base_model = InceptionV3(weights='imagenet', include_top=False)

    # dimensions of our images.
    # Inception input size
    attr.img_width, attr.img_height = 299, 299

    # add a global spatial average pooling layer
    x = base_model.output
    x = GlobalAveragePooling2D()(x)
    # let's add a fully-connected layer
    x = Dense(1024, activation='relu')(x)
    drop = Dropout(0.20)(x)

    # and a logistic layer -- we have 2 classes
    predictions = Dense(2, activation='softmax')(drop)

    # this is the model we will train
    attr.model = Model(inputs=base_model.input, outputs=predictions)

    # first: train only the top layers (which were randomly initialized)
Exemple #4
0
attr = ExecutionAttribute()
attr.architecture = 'vgg19'
attr.csv_path = 'csv/clinical_data.csv'
attr.s3_path = NETWORK_FORMAT + '/' + IMAGE_FORMAT
attr.numpy_path = '/mnt/data/image/2d/numpy/' + IMG_TYPE
# attr.numpy_path = '/home/amenegotto/dataset/2d/numpy/' + IMG_TYPE
attr.path = '/mnt/data/image/2d/' + IMG_TYPE

results_path = create_results_dir(SUMMARY_BASEPATH, 'fine-tuning',
                                  attr.architecture)
attr.summ_basename = get_base_name(results_path)
attr.set_dir_names()
attr.batch_size = 128
attr.epochs = 500

attr.img_width = 224
attr.img_height = 224

input_attributes_s = (20, )

# how many times to execute the training/validation/test cycle
CYCLES = 1

for i in range(0, CYCLES):

    #Load the VGG model
    vgg_conv = VGG19(weights='imagenet',
                     include_top=False,
                     input_shape=(attr.img_width, attr.img_height, 3))

    # Freeze the layers except the last 4 layers
Exemple #5
0
from keras.optimizers import RMSprop, Adam
from ExecutionAttributes import ExecutionAttribute
import cv2
import os
import pandas as pd
import numpy as np
from sklearn.metrics import classification_report, confusion_matrix, cohen_kappa_score, roc_auc_score, roc_curve
from keras.preprocessing.image import load_img, img_to_array

os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin'

# Execution Attributes
attr = ExecutionAttribute()

# dimensions of our images.
attr.img_width, attr.img_height = 32, 32

# network parameters
attr.path = 'C:/Users/hp/Downloads/cars_train'
attr.epochs = 200
attr.batch_size = 8
attr.set_dir_names()

if K.image_data_format() == 'channels_first':
    input_s = (3, attr.img_width, attr.img_height)
else:
    input_s = (attr.img_width, attr.img_height, 3)


def load_data(filepath):
    files = pd.read_csv(filepath)
Exemple #6
0
# Execution Attributes
INITIAL_EPOCH=1
attr = ExecutionAttribute()
attr.architecture = 'Xception'

results_path = create_results_dir('/mnt/data', 'fine-tuning', attr.architecture)
attr.summ_basename = get_base_name(results_path)
attr.path='/mnt/data/image/2d/com_pre_proc'
attr.set_dir_names()
attr.batch_size = 64  # try 4, 8, 16, 32, 64, 128, 256 dependent on CPU/GPU memory capacity (powers of 2 values).
attr.epochs = 15

# hyper parameters for model
nb_classes = 2  # number of classes
based_model_last_block_layer_number = 126  # value is based on based model selected.
attr.img_width, attr.img_height = 299, 299  # change based on the shape/structure of your images
learn_rate = 1e-4  # sgd learning rate
momentum = .9  # sgd momentum to avoid local minimum
transformation_ratio = .05  # how aggressive will be the data augmentation/transformation


if K.image_data_format() == 'channels_first':
    input_s = (1, attr.img_width, attr.img_height)
else:
    input_s = (attr.img_width, attr.img_height, 1)

# define model
#attr.model = load_model(attr.summ_basename + '-mid-ckweights.h5')

callbacks = [EarlyStopping(monitor='val_loss', patience=5, mode='min', restore_best_weights=True),
	 ModelCheckpoint(attr.summ_basename + "-ckweights.h5", mode='min', verbose=1, monitor='val_loss', save_best_only=True)]