index_not_inf = index_beta[index_beta>n_informative] print("loss", new_loss, "beta inf", len(index_inf), ", beta non inf",len(index_beta)) real_indexes = [] iter = np.argmin(mses) print("iter", iter) indexes = ordered_final_weights[:iter+1].astype("int64") if weights_all: weights = assign_weights(weights_data.copy()) weights = weights[indexes] else: weights = assign_weights(weights_data.copy()[indexes]) ###compute weighted LASSO on val XTrainVal, YTrainVal, XVal, YVal = results_cross_val.extract_train_val() XTrain_Valcurrent, XVal_current = get_current_data(XTrainVal, XVal, indexes) print("----------------------------") model = Shooting(weights) lasso = LASSOEstimator(model) loss, beta = compute_weightedLASSO(lasso,XTrain_Valcurrent,YTrainVal, XVal_current, YVal,scoring, score_f, verbose, values_TM) beta = np.abs(beta) beta_indexes,beta_ordered = get_beta_div_zeros(beta) ##new indexes final_indexes = indexes[beta_indexes] print("final indexes", final_indexes)
from Lasso_utils import compute_weightedLASSO, compute_lasso from utility import get_current_data, assign_weights, assign_weights_ordered, \ get_beta_div_zeros, print_features_active import sys sys.argv[1:] = [str(x) for x in sys.argv[1:]] file_name = sys.argv[1] ext = ".npz" file = "ENEL_2014/"+file_name+ext results = Result(file, "lasso") dict_ = results.extract_dict() XTrain, YTrain, XVal, YVal = results.extract_train_val() score = "mean_squared_error" if score=="r2_score": score_f = r2_score scoring = "r2" else: score_f = mean_squared_error scoring = "mean_squared_error" verbose = True ###compute ranking weights_data = results.extract_weights()
from ExtractResult import Result from Transformation import Enel_powerCurveTransformation, EnelWindSpeedTransformation, \ Enel_directionVersoPowerCurveTransformation, Enel_directionPowerCurveTransformation sys.argv[1:3] = [str(x) for x in sys.argv[1:]] folder_name = sys.argv[1] filename = sys.argv[2] compute_dict = (int)(sys.argv[3]) tot_filename = folder_name+"/"+filename results = Result(tot_filename, "lasso") weights_list = results.extract_weights() mses = results.extract_mses() XTrain_transf, _ = results.extract_data_transf() XTrain_, YTrain_, XVal_, YVal_ = results.extract_train_val() saved_indexes_list = results.get_saved_indexes() XTrain_ValNoCenter, YTrainVal_noCenter, XVal_noCenter,YVal_noCenter = results.extract_train_val_no_centered() output_dict = results.extract_dict() file = "ENEL_2014/Enel_dataset.npz" results = Result(file, "lasso") XTrain, YTrain, XTest, YTest = results.extract_train_test() X_speed,_ = EnelWindSpeedTransformation().transform(XTest) Coord, Coord_turb, power_curve = results.extract_coords() angles_coord_turb,verso_turb_point = compute_angle(Coord, Coord_turb) enel_transf = Enel_powerCurveTransformation() X_angle,x_verso,_ = enel_transf.compute_angle_matrix(XTest) if filename=="Enel_cross_val_blocks_direction_single_plus_verso.npz":