Exemple #1
0
def prepare_classify_mode(dataset_name, current_patient_name):
    fc.candidatesDataFile = neuro_networks_path + "candidates_" + current_patient_name + ".csv"
    fc.neuroNetworkFile = neuro_networks_path + "network_" + dataset_name + ".xml"
    fc.reportDataFile = neuro_networks_path + "report_" + dataset_name + ".txt"
    fc.bestNetworkFile = neuro_networks_path + "best_nn_" + dataset_name + ".xml"
    fc.bestNetworkInfoFile = neuro_networks_path + "best_nn_" + dataset_name + ".txt"
    fc.sepSymbol = ","
    fc.showExpected = False
    #SetLevel("DEBUG")
    SetLevel("ERROR")
Exemple #2
0
def prepare_learning_mode(dataset_name):
    fc.ethalonsDataFile = neuro_networks_path + "ethalons_" + dataset_name + ".csv"
    fc.neuroNetworkFile = neuro_networks_path + "network_" + dataset_name + ".xml"
    fc.reportDataFile = neuro_networks_path + "report_" + dataset_name + ".txt"
    fc.bestNetworkFile = neuro_networks_path + "best_nn_" + dataset_name + ".xml"
    fc.bestNetworkInfoFile = neuro_networks_path + "best_nn_" + dataset_name + ".txt"
    fc.sepSymbol = ","
    fc.showExpected = True
    #SetLevel("DEBUG")
    SetLevel("ERROR")
Exemple #3
0
def classify():
    fc.reportDataFile = "report.txt"
    fc.sepSymbol = ","
    fc.showExpected = True
    SetLevel("DEBUG")
    parameters = {
        "config": str(num_columns) + ",3,2,1",
        "epochs": 100,
        "rate": 0.5,
        "momentum": 0.5,
        "epsilon": 0.05,
        "stop": 1
    }
    fc.Main(classifyParameters=parameters)
Exemple #4
0
def train_classifier():
    fc.ethalonsDataFile = "ethalons.dat"
    fc.candidatesDataFile = "candidates.dat"
    fc.neuroNetworkFile = "network.xml"
    fc.sepSymbol = ","
    SetLevel("DEBUG")
    parameters = {
        "config": str(num_columns) + ",3,2,1",
        "epochs": 100,
        "rate": 0.5,
        "momentum": 0.5,
        "epsilon": 0.05,
        "stop": 1
    }
    fc.Main(learnParameters=parameters)
Exemple #5
0
    replace_with = float(data[column].sum()) / data.shape[0]
    data[column].fillna(replace_with, inplace=True)
data.to_csv(resource_path + "without_nan.csv")


train, test = train_test_split(data, test_size=0.3, random_state=0)
#test["Class"].replace({0: "", 1: ""}, inplace=True)
train.to_csv("ethalons.dat", index=False)
test.to_csv("candidates.dat", index=False)


fc.EthalonDataFile = "ethalons.dat"
fc.candidatesDataFile = "candidates.dat"
fc.neuroNetworkFile = "network.xml"
fc.sepSymbol = ","
SetLevel("DEBUG")
parameters = {
        "config": str(num_columns) + ",3,2,1", 
        "epochs": 120, 
        "rate": 0.6, 
        "momentum": 0.38, 
        "epsilon": 0.044, 
        "stop": 1}
fc.Main(learnParameters=parameters)


fc.reportDataFile = "report.txt"
fc.sepSymbol = ","
fc.showExpected = True
SetLevel("DEBUG")
parameters = {