Exemple #1
0
logging.basicConfig(
    format="%(asctime)s %(levelname)-8s %(message)s",
    level=logging.INFO,
    datefmt="%Y-%m-%d %H:%M:%S",
)

B = 10  # 600
is_iid = True
C = 0.1
lr = 0.1
for s in range(20):
    name = f"Seed value: {s}"

    logging.info(name)
    experiment = Experiment(workspace="federated-learning",
                            project_name="Reproducability seed")
    experiment.set_name(name)
    # TODO a paraméterek helytelen nevére nem adott hibát
    config = TorchFederatedLearnerMNISTConfig(
        LEARNING_RATE=lr,
        IS_IID_DATA=is_iid,
        BATCH_SIZE=B,
        CLIENT_FRACTION=C,
        N_CLIENTS=100,
        N_EPOCH_PER_CLIENT=5,
        MAX_ROUNDS=300,
        SEED=s,
    )
    learner = TorchFederatedLearnerMNIST(experiment, config)
    learner.train()
Exemple #2
0
    format="%(asctime)s %(levelname)-8s %(message)s",
    level=logging.INFO,
    datefmt="%Y-%m-%d %H:%M:%S",
)

C = 1
NC = 2
E = 5
B = 50
is_iid = False

dist = "IID" if is_iid else "non IID"
name = f"torch - {dist} - glorot"

logging.info(name)
experiment = Experiment(workspace="federated-learning",
                        project_name="compare-frameworks")
experiment.set_name(name)
# TODO a paraméterek helytelen nevére nem adott hibát
config = TorchFederatedLearnerMNISTConfig(
    LEARNING_RATE=0.1,
    IS_IID_DATA=is_iid,
    BATCH_SIZE=B,
    CLIENT_FRACTION=C,
    N_CLIENTS=NC,
    N_EPOCH_PER_CLIENT=E,
    MAX_ROUNDS=1500,
)
learner = TorchFederatedLearnerMNIST(experiment, config)
learner.train()
Exemple #3
0
from comet_ml import Experiment
import logging

from FLF.TorchFederatedLearnerMNIST import TorchFederatedLearnerMNIST, TorchFederatedLearnerMNISTConfig

logging.basicConfig(
    format='%(asctime)s %(levelname)-8s %(message)s',
    level=logging.INFO,
    datefmt='%Y-%m-%d %H:%M:%S')

name = "TorchClientBatchIter"
logging.info(name)
experiment = Experiment(
    workspace="federated-learning", project_name="simple_runs"
)
experiment.set_name(name)
config = TorchFederatedLearnerMNISTConfig(N_CLIENTS=100, CLIENT_FRACTION=0.1, N_ROUNDS=10, BATCH_SIZE=64)
learner = TorchFederatedLearnerMNIST(experiment, config)
learner.train()

# TODO n workers for data loading is broken