from datetime import datetime, timedelta sys.path.insert(0, '..') from noveltyDetectionConfig import CONFIG import numpy as np import itertools import multiprocessing import pprint from SAENoveltyDetectionAnalysis import SAENoveltyDetectionAnalysis num_processes = multiprocessing.cpu_count() from Functions.telegrambot import Bot my_bot = Bot("lisa_thebot") # Enviroment variables data_path = CONFIG['OUTPUTDATAPATH'] results_path = CONFIG['PACKAGE_NAME'] training_params = { "Technique": "StackedAutoEncoder", "TechniqueParameters": { "allow_change_weights": False #False }, "DevelopmentMode": False, "DevelopmentEvents": 400, "NoveltyDetection": True, "InputDataConfig": { "database": "4classes",
gpu_id = args.gpu_id tf.get_logger().setLevel(logging.ERROR) tf.debugging.set_log_device_placement(False) gpus = tf.config.experimental.list_physical_devices('GPU') print("Num GPUs Available: ", len(gpus)) if gpus: tf.config.experimental.set_visible_devices(gpus[gpu_id], f'GPU') num_processes = multiprocessing.cpu_count() my_bot = Bot("lisa_thebot") # Enviroment variables data_path = CONFIG['OUTPUTDATAPATH'] results_path = CONFIG['PACKAGE_NAME'] def main(training_params: dict): analysis = VAENoveltyDetectionAnalysis(parameters=training_params, load_hash=False, load_data=True, verbose=True) all_data, all_trgt, trgt_sparse = analysis.getData() analysis.emulate_novelties() analysis.build_vae_models()
import os import time import multiprocessing import pprint from datetime import datetime, timedelta import numpy as np import matplotlib.pyplot as plt from Packages.NoveltyDetection.setup.noveltyDetectionConfig import CONFIG from Packages.NoveltyDetection.StackedAutoEncoders.SAENoveltyDetectionAnalysis import SAENoveltyDetectionAnalysis from Functions.telegrambot import Bot num_processes = multiprocessing.cpu_count() my_bot = Bot("lisa_thebot") # Enviroment variables data_path = CONFIG['OUTPUTDATAPATH'] results_path = CONFIG['PACKAGE_NAME'] training_params = {"Technique": "StackedAutoEncoder"} analysis = SAENoveltyDetectionAnalysis( parameters=training_params, # model_hash='3aa7b6b2a784922c348292561edca3d5201d6d6567f727e6ce7e403d7f175b10', # model_hash="048afa2017b8b40203db1ef3f94e806a4d9772fe14b032a479f96f9551853574", # model_hash='5fee10c0e061666bbd9b5ad4544503a562deb56f25bd5f80b9f2c8ca3bf76b81', # PF linear no decoder model_hash= 'f84a0f006d8a19e5c3dbe25d4907659013495f79bb8b377e88673a899d9e2a2d', # PF tanh no decoder load_hash=True, load_data=True,