Exemple #1
0
        def cook(self, location, interface, attrs):
            if not self.client.IsConnected():
                print "Not connected"
                if not self.client.Connect(attrs['ipAddress'],
                                           int(attrs['port'])):
                    print "Connection Failed"
                    return False
                print "New Connection!"

            currentFrame = self.client.GetCurrentFrame()

            RT = currentFrame.CameraTracking.Transform

            fovX, fovY = currentFrame.OpticalParameters.FOV

            if np.abs(fovY) < 1e-10:
                return False

            cx, cy = currentFrame.OpticalParameters.ProjectionCenter  # TODO: Investigate format
            ox, oy = 2 * (cx - 0.5), 2 * (cy - 0.5)

            K = Calibrate.composeK(fovX,
                                   ox=ox,
                                   oy=oy,
                                   square=(fovY / fovX),
                                   skew=0)[:3, :3]
            width_height = currentFrame.OpticalParameters.Resolution
            P = np.dot(K, RT)
            mat = Calibrate.makeMat(P, (0.0, 0.0),
                                    width_height)  # TODO Distortion Param

            self.setupAttrs = {
                'Ps': [P],
                'camera_ids': ["1"],
                'camera_names': ["NCAM_Camera"],
                'mats': [mat],
                'updateMats': True
            }
            interface.createChild('cameras',
                                  'cameras',
                                  atLocation=location,
                                  attrs=self.setupAttrs)

            return True
Exemple #2
0
	def K(self):
		'''Yields the intrinsic matrix for the view, K.'''
		return Calibrate.composeK(self.cameraFovX,self.cameraKox,self.cameraKoy,self.cameraKsquare,self.cameraKskew)
Exemple #3
0
def main():
    global State, mats, movieFilenames, primitives
    global movies, primitives2D, deinterlacing, detectingWands
    import IO
    import sys, os
    deinterlacing = False
    detectingWands = False
    detectingTiara = False
    dot_detections = None
    detections_filename = None
    frame_offsets = None
    firstFrame, lastFrame = 0, 5000
    drawDotSize = 4.0
    fovX, (ox,
           oy), pan_tilt_roll, tx_ty_tz, distortion = 50., (0,
                                                            0), (0, 0,
                                                                 0), (0, 1250,
                                                                      0), (0,
                                                                           0)
    mats = []
    grip_directory = os.environ['GRIP_DATA']

    if 0:
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 37.9, (0, 0), (
            -66.0, 3.5, -0.2), (4850, 1330, 3280), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat0 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 55.8, (0, 0), (
            -103.6, 3.5, -0.3), (2980, 1380, -2180), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat1 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 49.3, (0, 0), (
            27.9, 4.0, -0.2), (-5340, 1150, 5030), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat2 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 50.6, (0, 0), (
            -156.6, 4.9, 0.2), (-105, 1400, -4430), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat3 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        mats = [mat0, mat1, mat2, mat3]
        xcp_filename = '154535_Cal168_Floor_Final.xcp'
        directory = os.path.join(grip_directory, 'REFRAME')
        movieFilenames = [
            '001E0827_01.MP4', '001F0813_01.MP4', '001G0922_01.MP4',
            '001H0191_01.MP4'
        ]
        #mats,movieFilenames = mats[:1],movieFilenames[:1] # restrict to single-view
        frame_offsets = [119 + 160, 260, 339, 161]
        small_blur, large_blur = 1, 25
        min_dot_size = 1.0
        max_dot_size = 20.0
        circularity_threshold = 3.0
        threshold_bright, threshold_dark_inv = 250, 250  #135,135
    elif 0:
        xcp_filename = '201401211653-4Pico-32_Quad_Dialogue_01_Col_wip_01.xcp'
        detections_filename = 'detections.dat'
        detectingTiara = True
        pan_tilt_roll = (0, 0, 90)
        distortion = (0.291979, 0.228389)
        directory = os.path.join(os.environ['GRIP_DATA'], 'ted')
        movieFilenames = [
            '201401211653-4Pico-32_Quad_Dialogue_01_%d.mpg' % xi
            for xi in range(1)
        ]
        firstFrame = 511
        small_blur, large_blur = 1, 20
        min_dot_size = 1.0
        max_dot_size = 16.0
        circularity_threshold = 3.0
        threshold_bright, threshold_dark_inv = 0, 170
    elif 1:
        xcp_filename = '50_Grip_RoomCont_AA_02.xcp'
        detections_filename = 'detections.dat'
        pan_tilt_roll = (0, 0, 0)
        distortion = (0.291979, 0.228389)
        directory = os.path.join(os.environ['GRIP_DATA'], '151110')
        movieFilenames = ['50_Grip_RoomCont_AA_02.v2.mov']
        firstFrame = 0
        small_blur, large_blur = 1, 20
        min_dot_size = 1.0
        max_dot_size = 16.0
        circularity_threshold = 3.0
        threshold_bright, threshold_dark_inv = 170, 170

    attrs = dict([(v, eval(v)) for v in [
        'small_blur', 'large_blur', 'threshold_bright', 'threshold_dark_inv',
        'circularity_threshold', 'min_dot_size', 'max_dot_size'
    ]])

    primitives2D = QGLViewer.makePrimitives2D(([], []), ([], []))
    primitives = []
    if len(movieFilenames) is 1:
        # TODO: time_base, timecode
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mats = [[
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]]
        camera_ids = ['video']
        movies = [
            MovieReader.open_file(os.path.join(directory, movieFilenames[0]),
                                  audio=False)
        ]
    else:  # hard coded cameras
        if xcp_filename.endswith('.xcp'):
            if detectingTiara:  # gruffalo
                c3d_filename = os.path.join(
                    directory,
                    '201401211653-4Pico-32_Quad_Dialogue_01_Col_wip_02.c3d')
                from IO import C3D
                c3d_dict = C3D.read(c3d_filename)
                global c3d_frames
                c3d_frames, c3d_fps, c3d_labels = c3d_dict['frames'], c3d_dict[
                    'fps'], c3d_dict['labels']
                c3d_subject = ''  #'TedFace'
                which = np.where(
                    [s.startswith(c3d_subject) for s in c3d_labels])[0]
                c3d_frames = c3d_frames[:, which, :]
                c3d_labels = [c3d_labels[i] for i in which]
                print len(c3d_frames)
            xcp, xcp_data = ViconReader.loadXCP(
                os.path.join(directory, xcp_filename))
            mats.extend(xcp)
        elif xcp_filename.endswith('.cal'):
            from IO import OptitrackReader
            xcp, xcp_data = OptitrackReader.load_CAL(
                os.path.join(directory, xcp_filename))
            mats = xcp
            print 'mats', len(mats), len(movieFilenames)
            assert (len(mats) == len(movieFilenames))
        camera_ids = []
        movies = []
        for ci, mf in enumerate(movieFilenames):
            fo = 0 if frame_offsets is None else frame_offsets[ci]
            movies.append(
                MovieReader.open_file(os.path.join(directory, mf),
                                      audio=False,
                                      frame_offset=fo))
        camera_ids = ['cam_%d' % ci for ci in xrange(len(mats))]
        print len(mats), len(movies), len(camera_ids)
    primitives.append(GLPoints3D([]))
    primitives.append(GLPoints3D([]))
    primitives.append(GLPoints3D([]))
    primitives[0].colour = (0, 1, 1, 0.5)  # back-projected "cyan" points
    primitives[1].colour = (0, 0, 1, 0.5)
    primitives[1].pointSize = 5
    primitives[2].colour = (1, 0, 0, 0.99)

    if len(movieFilenames) != 1 and detections_filename != None:
        try:
            dot_detections = IO.load(detections_filename)[1]
        except:
            numFrames = len(c3d_frames)  # TODO HACK HACK
            dot_detections = movies_to_detections(movies, range(numFrames),
                                                  deinterlacing, attrs)
            IO.save(detections_filename, dot_detections)

        if detectingTiara:
            x3ds_seq = {}
            for fi in dot_detections.keys():
                frame = c3d_frames[(fi - 55) % len(c3d_frames)]
                which = np.array(np.where(frame[:, 3] == 0)[0], dtype=np.int32)
                x3ds_seq[fi] = np.concatenate((VICON_tiara_x3ds + np.array([150,-100,0],dtype=np.float32),frame[which,:3])), \
                      np.concatenate((np.arange(len(VICON_tiara_x3ds),dtype=np.int32),which+len(VICON_tiara_x3ds)))

            dot_labels = get_labels(dot_detections.keys(),
                                    x3ds_seq,
                                    dot_detections,
                                    mats,
                                    x2d_threshold=0.05)

            calibration_fi = 546 - 2 - 6

            RT = tighten_calibration(x3ds_seq[calibration_fi],
                                     dot_labels[calibration_fi], mats)
            for v in c3d_frames:
                v[:, :3] = np.dot(v[:, :3], RT[:3, :3].T) + RT[:, 3]

            if True:
                dot_detections = IO.load(detections_filename)[1]
                x3ds_seq = {}
                for fi in dot_detections.keys():
                    frame = c3d_frames[(fi - 55) % len(c3d_frames)]
                    which = np.array(np.where(frame[:, 3] == 0)[0],
                                     dtype=np.int32)
                    x3ds_seq[fi] = np.concatenate((VICON_tiara_x3ds + np.array([0,1000,0],dtype=np.float32),frame[which,:3])), \
                          np.concatenate((np.arange(len(VICON_tiara_x3ds),dtype=np.int32),which+len(VICON_tiara_x3ds)))

                #dot_labels = get_labels(dot_detections.keys(), x3ds_seq, dot_detections, mats, x2d_threshold = 0.05)

    if detectingTiara:
        primitives.append(GLPoints3D(VICON_tiara_x3ds + [0, 1000, 0]))
        primitives[-1].pointSize = 5

    global track3d, prev_frame, booting, trackGraph
    track3d = Label.Track3D(mats[:len(movies)],
                            x2d_threshold=0.03,
                            x3d_threshold=5.0,
                            min_rays=3,
                            boot_interval=2)  #tilt_threshold = 0.01, gruffalo
    trackGraph = Label.TrackGraph()
    prev_frame = 0
    booting = 1

    from UI import QApp
    from PySide import QtGui
    from GCore import State
    # Modified the options parameter for fields to be the range of acceptable values for the box
    # Previously would crash if small_blur got too low
    QApp.fields = {
        'image filter': [
            ('small_blur', 'Small blur radius',
             'This is part of the image filter which controls the size of smallest detected features.',
             'int', small_blur, {
                 "min": 0,
                 "max": None
             }),
            ('large_blur', 'Large blur radius',
             'This is part of the image filter which controls the size of largest detected features.',
             'int', large_blur, {
                 "min": 0,
                 "max": None
             }),
            ('threshold_bright', 'threshold_bright',
             'This is part of the image filter which controls the size of smallest detected features.',
             'int', threshold_bright, {
                 "min": 0,
                 "max": 255
             }),
            ('threshold_dark_inv', 'threshold_dark_inv',
             'This is part of the image filter which controls the size of largest detected features.',
             'int', threshold_dark_inv, {
                 "min": 0,
                 "max": 255
             }),
            ('circularity_threshold', 'circularity_threshold',
             'How circular?.', 'float', circularity_threshold, {
                 "min": 0,
                 "max": 100
             }),
            ('min_dot_size', 'min_dot_size',
             'min_dot_size smallest detected features.', 'float', min_dot_size,
             {
                 "min": 0,
                 "max": 100
             }),
            ('max_dot_size', 'max_dot_size',
             'max_dot_size largest detected features.', 'float', max_dot_size,
             {
                 "min": 0,
                 "max": 100
             }),
        ]
    }
    State.addKey('dotParams', {'type': 'image filter', 'attrs': attrs})
    State.setSel('dotParams')
    appIn = QtGui.QApplication(sys.argv)
    appIn.setStyle('plastique')
    win = QApp.QApp()
    win.setWindowTitle('Imaginarium Dots Viewer')
    QGLViewer.makeViewer(primitives=primitives,
                         primitives2D=primitives2D,
                         timeRange=(firstFrame, lastFrame),
                         callback=setFrame,
                         mats=mats,
                         camera_ids=camera_ids,
                         movies=movies,
                         pickCallback=picked,
                         appIn=appIn,
                         win=win)
Exemple #4
0
             (219.5 - 2., -180. - 2., 202. - 1.), (0.291979, 0.228389)),
            (307, 76.41, (0.036673, 0.081622),
             (-20.4 - 1.2 + 2. - 2.1 - 0.6, 37.0 + 1.1 + 1.3 + 0.1 - 0.3 - 0.2,
              101.5 + 0.3 - 0.3 + 1.0 + 0.7),
             (215. - 1 - 5 + 8 - 1, -126. + 1 + 4 + 3 - 3,
              182. - 2.5 - 3), (0.292402446, 0.214726448)),
            (215, 76.4, (0.019527, 0.037984), (29.3 - 0.2, 35.0 - 0.2,
                                               -104.6 + 0.1),
             (63 + 2., -119 - 1, 170 + 1), (0.29172, 0.22112)),
            (261, 76.7, (-0.050844, 0.078558),
             (18.1 - 0.3, 24.8 + 1.2, -101.7), (81. + 2, -158 + 4,
                                                199), (0.29115, 0.228548)),
        ]
        for ci, (c, x) in enumerate(zip(cams, xcp)):
            interest, fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = c
            K, RT = Calibrate.composeK(fovX, ox=ox,
                                       oy=oy), Calibrate.composeRT(
                                           Calibrate.composeR(pan_tilt_roll),
                                           tx_ty_tz, 0)
            K, RT = Calibrate.decomposeKRT(
                xcp[ci][2])  # !!!!use the original values!!!!
            P = np.dot(K, RT)[:3, :]
            P2 = x[2]
            print 'diff', np.dot(P2[:3, :3], np.linalg.pinv(
                P[:3, :3])), 'dt', P[:, 3] - P2[:, 3]
            RT = np.dot(RT, offset)
            xcp[ci] = [
                K[:3, :3], RT[:3, :4],
                np.dot(K, RT)[:3, :], distortion,
                -np.dot(RT[:3, :3].T, RT[:3, 3])
            ]