def cook(self, location, interface, attrs): if not self.client.IsConnected(): print "Not connected" if not self.client.Connect(attrs['ipAddress'], int(attrs['port'])): print "Connection Failed" return False print "New Connection!" currentFrame = self.client.GetCurrentFrame() RT = currentFrame.CameraTracking.Transform fovX, fovY = currentFrame.OpticalParameters.FOV if np.abs(fovY) < 1e-10: return False cx, cy = currentFrame.OpticalParameters.ProjectionCenter # TODO: Investigate format ox, oy = 2 * (cx - 0.5), 2 * (cy - 0.5) K = Calibrate.composeK(fovX, ox=ox, oy=oy, square=(fovY / fovX), skew=0)[:3, :3] width_height = currentFrame.OpticalParameters.Resolution P = np.dot(K, RT) mat = Calibrate.makeMat(P, (0.0, 0.0), width_height) # TODO Distortion Param self.setupAttrs = { 'Ps': [P], 'camera_ids': ["1"], 'camera_names': ["NCAM_Camera"], 'mats': [mat], 'updateMats': True } interface.createChild('cameras', 'cameras', atLocation=location, attrs=self.setupAttrs) return True
def K(self): '''Yields the intrinsic matrix for the view, K.''' return Calibrate.composeK(self.cameraFovX,self.cameraKox,self.cameraKoy,self.cameraKsquare,self.cameraKskew)
def main(): global State, mats, movieFilenames, primitives global movies, primitives2D, deinterlacing, detectingWands import IO import sys, os deinterlacing = False detectingWands = False detectingTiara = False dot_detections = None detections_filename = None frame_offsets = None firstFrame, lastFrame = 0, 5000 drawDotSize = 4.0 fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 50., (0, 0), (0, 0, 0), (0, 1250, 0), (0, 0) mats = [] grip_directory = os.environ['GRIP_DATA'] if 0: fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 37.9, (0, 0), ( -66.0, 3.5, -0.2), (4850, 1330, 3280), (0, 0) # roughed in K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT( Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0) mat0 = [ K[:3, :3], RT[:3, :4], np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]), [1920, 1080] ] fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 55.8, (0, 0), ( -103.6, 3.5, -0.3), (2980, 1380, -2180), (0, 0) # roughed in K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT( Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0) mat1 = [ K[:3, :3], RT[:3, :4], np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]), [1920, 1080] ] fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 49.3, (0, 0), ( 27.9, 4.0, -0.2), (-5340, 1150, 5030), (0, 0) # roughed in K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT( Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0) mat2 = [ K[:3, :3], RT[:3, :4], np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]), [1920, 1080] ] fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 50.6, (0, 0), ( -156.6, 4.9, 0.2), (-105, 1400, -4430), (0, 0) # roughed in K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT( Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0) mat3 = [ K[:3, :3], RT[:3, :4], np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]), [1920, 1080] ] mats = [mat0, mat1, mat2, mat3] xcp_filename = '154535_Cal168_Floor_Final.xcp' directory = os.path.join(grip_directory, 'REFRAME') movieFilenames = [ '001E0827_01.MP4', '001F0813_01.MP4', '001G0922_01.MP4', '001H0191_01.MP4' ] #mats,movieFilenames = mats[:1],movieFilenames[:1] # restrict to single-view frame_offsets = [119 + 160, 260, 339, 161] small_blur, large_blur = 1, 25 min_dot_size = 1.0 max_dot_size = 20.0 circularity_threshold = 3.0 threshold_bright, threshold_dark_inv = 250, 250 #135,135 elif 0: xcp_filename = '201401211653-4Pico-32_Quad_Dialogue_01_Col_wip_01.xcp' detections_filename = 'detections.dat' detectingTiara = True pan_tilt_roll = (0, 0, 90) distortion = (0.291979, 0.228389) directory = os.path.join(os.environ['GRIP_DATA'], 'ted') movieFilenames = [ '201401211653-4Pico-32_Quad_Dialogue_01_%d.mpg' % xi for xi in range(1) ] firstFrame = 511 small_blur, large_blur = 1, 20 min_dot_size = 1.0 max_dot_size = 16.0 circularity_threshold = 3.0 threshold_bright, threshold_dark_inv = 0, 170 elif 1: xcp_filename = '50_Grip_RoomCont_AA_02.xcp' detections_filename = 'detections.dat' pan_tilt_roll = (0, 0, 0) distortion = (0.291979, 0.228389) directory = os.path.join(os.environ['GRIP_DATA'], '151110') movieFilenames = ['50_Grip_RoomCont_AA_02.v2.mov'] firstFrame = 0 small_blur, large_blur = 1, 20 min_dot_size = 1.0 max_dot_size = 16.0 circularity_threshold = 3.0 threshold_bright, threshold_dark_inv = 170, 170 attrs = dict([(v, eval(v)) for v in [ 'small_blur', 'large_blur', 'threshold_bright', 'threshold_dark_inv', 'circularity_threshold', 'min_dot_size', 'max_dot_size' ]]) primitives2D = QGLViewer.makePrimitives2D(([], []), ([], [])) primitives = [] if len(movieFilenames) is 1: # TODO: time_base, timecode K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT( Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0) mats = [[ K[:3, :3], RT[:3, :4], np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]), [1920, 1080] ]] camera_ids = ['video'] movies = [ MovieReader.open_file(os.path.join(directory, movieFilenames[0]), audio=False) ] else: # hard coded cameras if xcp_filename.endswith('.xcp'): if detectingTiara: # gruffalo c3d_filename = os.path.join( directory, '201401211653-4Pico-32_Quad_Dialogue_01_Col_wip_02.c3d') from IO import C3D c3d_dict = C3D.read(c3d_filename) global c3d_frames c3d_frames, c3d_fps, c3d_labels = c3d_dict['frames'], c3d_dict[ 'fps'], c3d_dict['labels'] c3d_subject = '' #'TedFace' which = np.where( [s.startswith(c3d_subject) for s in c3d_labels])[0] c3d_frames = c3d_frames[:, which, :] c3d_labels = [c3d_labels[i] for i in which] print len(c3d_frames) xcp, xcp_data = ViconReader.loadXCP( os.path.join(directory, xcp_filename)) mats.extend(xcp) elif xcp_filename.endswith('.cal'): from IO import OptitrackReader xcp, xcp_data = OptitrackReader.load_CAL( os.path.join(directory, xcp_filename)) mats = xcp print 'mats', len(mats), len(movieFilenames) assert (len(mats) == len(movieFilenames)) camera_ids = [] movies = [] for ci, mf in enumerate(movieFilenames): fo = 0 if frame_offsets is None else frame_offsets[ci] movies.append( MovieReader.open_file(os.path.join(directory, mf), audio=False, frame_offset=fo)) camera_ids = ['cam_%d' % ci for ci in xrange(len(mats))] print len(mats), len(movies), len(camera_ids) primitives.append(GLPoints3D([])) primitives.append(GLPoints3D([])) primitives.append(GLPoints3D([])) primitives[0].colour = (0, 1, 1, 0.5) # back-projected "cyan" points primitives[1].colour = (0, 0, 1, 0.5) primitives[1].pointSize = 5 primitives[2].colour = (1, 0, 0, 0.99) if len(movieFilenames) != 1 and detections_filename != None: try: dot_detections = IO.load(detections_filename)[1] except: numFrames = len(c3d_frames) # TODO HACK HACK dot_detections = movies_to_detections(movies, range(numFrames), deinterlacing, attrs) IO.save(detections_filename, dot_detections) if detectingTiara: x3ds_seq = {} for fi in dot_detections.keys(): frame = c3d_frames[(fi - 55) % len(c3d_frames)] which = np.array(np.where(frame[:, 3] == 0)[0], dtype=np.int32) x3ds_seq[fi] = np.concatenate((VICON_tiara_x3ds + np.array([150,-100,0],dtype=np.float32),frame[which,:3])), \ np.concatenate((np.arange(len(VICON_tiara_x3ds),dtype=np.int32),which+len(VICON_tiara_x3ds))) dot_labels = get_labels(dot_detections.keys(), x3ds_seq, dot_detections, mats, x2d_threshold=0.05) calibration_fi = 546 - 2 - 6 RT = tighten_calibration(x3ds_seq[calibration_fi], dot_labels[calibration_fi], mats) for v in c3d_frames: v[:, :3] = np.dot(v[:, :3], RT[:3, :3].T) + RT[:, 3] if True: dot_detections = IO.load(detections_filename)[1] x3ds_seq = {} for fi in dot_detections.keys(): frame = c3d_frames[(fi - 55) % len(c3d_frames)] which = np.array(np.where(frame[:, 3] == 0)[0], dtype=np.int32) x3ds_seq[fi] = np.concatenate((VICON_tiara_x3ds + np.array([0,1000,0],dtype=np.float32),frame[which,:3])), \ np.concatenate((np.arange(len(VICON_tiara_x3ds),dtype=np.int32),which+len(VICON_tiara_x3ds))) #dot_labels = get_labels(dot_detections.keys(), x3ds_seq, dot_detections, mats, x2d_threshold = 0.05) if detectingTiara: primitives.append(GLPoints3D(VICON_tiara_x3ds + [0, 1000, 0])) primitives[-1].pointSize = 5 global track3d, prev_frame, booting, trackGraph track3d = Label.Track3D(mats[:len(movies)], x2d_threshold=0.03, x3d_threshold=5.0, min_rays=3, boot_interval=2) #tilt_threshold = 0.01, gruffalo trackGraph = Label.TrackGraph() prev_frame = 0 booting = 1 from UI import QApp from PySide import QtGui from GCore import State # Modified the options parameter for fields to be the range of acceptable values for the box # Previously would crash if small_blur got too low QApp.fields = { 'image filter': [ ('small_blur', 'Small blur radius', 'This is part of the image filter which controls the size of smallest detected features.', 'int', small_blur, { "min": 0, "max": None }), ('large_blur', 'Large blur radius', 'This is part of the image filter which controls the size of largest detected features.', 'int', large_blur, { "min": 0, "max": None }), ('threshold_bright', 'threshold_bright', 'This is part of the image filter which controls the size of smallest detected features.', 'int', threshold_bright, { "min": 0, "max": 255 }), ('threshold_dark_inv', 'threshold_dark_inv', 'This is part of the image filter which controls the size of largest detected features.', 'int', threshold_dark_inv, { "min": 0, "max": 255 }), ('circularity_threshold', 'circularity_threshold', 'How circular?.', 'float', circularity_threshold, { "min": 0, "max": 100 }), ('min_dot_size', 'min_dot_size', 'min_dot_size smallest detected features.', 'float', min_dot_size, { "min": 0, "max": 100 }), ('max_dot_size', 'max_dot_size', 'max_dot_size largest detected features.', 'float', max_dot_size, { "min": 0, "max": 100 }), ] } State.addKey('dotParams', {'type': 'image filter', 'attrs': attrs}) State.setSel('dotParams') appIn = QtGui.QApplication(sys.argv) appIn.setStyle('plastique') win = QApp.QApp() win.setWindowTitle('Imaginarium Dots Viewer') QGLViewer.makeViewer(primitives=primitives, primitives2D=primitives2D, timeRange=(firstFrame, lastFrame), callback=setFrame, mats=mats, camera_ids=camera_ids, movies=movies, pickCallback=picked, appIn=appIn, win=win)
(219.5 - 2., -180. - 2., 202. - 1.), (0.291979, 0.228389)), (307, 76.41, (0.036673, 0.081622), (-20.4 - 1.2 + 2. - 2.1 - 0.6, 37.0 + 1.1 + 1.3 + 0.1 - 0.3 - 0.2, 101.5 + 0.3 - 0.3 + 1.0 + 0.7), (215. - 1 - 5 + 8 - 1, -126. + 1 + 4 + 3 - 3, 182. - 2.5 - 3), (0.292402446, 0.214726448)), (215, 76.4, (0.019527, 0.037984), (29.3 - 0.2, 35.0 - 0.2, -104.6 + 0.1), (63 + 2., -119 - 1, 170 + 1), (0.29172, 0.22112)), (261, 76.7, (-0.050844, 0.078558), (18.1 - 0.3, 24.8 + 1.2, -101.7), (81. + 2, -158 + 4, 199), (0.29115, 0.228548)), ] for ci, (c, x) in enumerate(zip(cams, xcp)): interest, fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = c K, RT = Calibrate.composeK(fovX, ox=ox, oy=oy), Calibrate.composeRT( Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0) K, RT = Calibrate.decomposeKRT( xcp[ci][2]) # !!!!use the original values!!!! P = np.dot(K, RT)[:3, :] P2 = x[2] print 'diff', np.dot(P2[:3, :3], np.linalg.pinv( P[:3, :3])), 'dt', P[:, 3] - P2[:, 3] RT = np.dot(RT, offset) xcp[ci] = [ K[:3, :3], RT[:3, :4], np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]) ]