current_dir = os.path.dirname(os.path.abspath(filename)) local_path="data" # this folder should containt the files in file_list for fname in file_list: fullfile=os.path.join(current_dir,local_path,fname) T=import_data(fullfile) # get astro-data from file t0=time.time() # benchmark performance O_period,p_period,m_opt,S,w,w_peak,w_mean,w_conf=compute_GL(T,parallel=px) # run GL, parallel execution t1=time.time() print "total time used = %f with parallel execution\n" % (t1-t0) n=compute_bin(T,m=m_opt,w=w_peak,p=0) # compute resulting bin histogram print ('File:%s - Likelihood of periodic process =%3.2f %% most likely frequency %e mean frequency %e 95 %% confidence interval = [%e %e]\n') % (fname,p_period*100,w_peak,w_mean,w_conf[0],w_conf[1]) # serial execution print "serial execution\n" px=False for fname in file_list: fullfile=os.path.join(current_dir,local_path,fname) T=import_data(fullfile) # get astro-data from file t0=time.time() # benchmark performance
import matplotlib.pyplot as plt if __name__ == '__main__': psx=False # parallel execution w0=0.0004 # simulate slow frequency signal phase0=1.0 # with phase offset 1.0 # simulate constant rate process as test of Null - hypothesis T1=simulate_arrival_times() # simulate periodic rate process as positive test T2=simulate_arrival_times(w=w0,phase=phase0,noise_rate=0.0000) #make bin histograms n1=compute_bin(T1,m=7,w=w0,p=phase0) n2=compute_bin(T2,m=7,w=w0,p=phase0) # plot the bin histograms ind=np.arange(7) # x-axis for the bin histogram width = 0.35 # the width of the bars # constant rate process fig, ax = plt.subplots() rects1 = ax.bar(ind, n1, width, color='b') ax.set_ylabel('bin count') ax.set_title('phase bin histogramm for constant rate process') # periodic process fig, ax = plt.subplots() rects2 = ax.bar(ind, n2, width, color='b')