Exemple #1
0
regimes_C = ['sparse', 'extreme_dilution', 'dense']
figFile = r'E:\KCL\FinalProject\figures\withoutExt\trials_0\alpha_1_C_3/'

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.allocator_type = 'BFC'
config.gpu_options.per_process_gpu_memory_fraction = 0.95

dm = DynamicModel(temperature,
                  N,
                  avgDegree,
                  alpha,
                  tfConfig=config,
                  gamma=gamma,
                  withExt=True)
re = Recoder(dm, totalSteps, binDist, False)
simulator = MonteCarloSimulator(dm, totalSteps, numSim)
matShape = (simulator.numSim, simulator.numSim)
compute_q_matrix = Recoder.observable_matrix(re, simulator,
                                             matShape)(Recoder.EA_overlap)

for reg_p in regimes_P:
    for reg_c in regimes_C:
        if reg_p is not 'limited':
            dm.regime_P(reg_p)
        else:
            dm.regime_P(reg_p, limitedRegimePatNum)

        if reg_c is not 'dense':
            dm.regime_C(reg_c)
        else:
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 19 10:26:13 2019

@author: Jerry
"""

from GRN import DynamicModel, Recoder, MonteCarloSimulator

N = 2000
alpha = 0.003
avgDegree = 3
temperature = 0.00
totalSteps = 50
binDist = 20
numSim = 20
dm = DynamicModel(temperature, N, avgDegree, alpha)
re = Recoder(dm, totalSteps, binDist, False)
simulator = MonteCarloSimulator(dm, totalSteps, numSim)
matShape = (simulator.numSim, re.dynModel.P)

simulator.simulation()

compute_observable_matrix = Recoder.observable_matrix(
    re, simulator, matShape, True)(Recoder.hamming_overlap)
print("computing observable matrix...")
compute_observable_matrix()
print("Done. Now drawing...")
re.draw_distance_matrix()
Exemple #3
0
regimes_C = ['sparse', 'extreme_dilution', 'dense']
figFile = r'E:\KCL\FinalProject\figures\withExt\trials_1\alpha_1_C_3/'

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.allocator_type = 'BFC'
config.gpu_options.per_process_gpu_memory_fraction = 0.95

dm = DynamicModel(temperature,
                  N,
                  avgDegree,
                  alpha,
                  tfConfig=config,
                  gamma=gamma,
                  withExt=True)
re = Recoder(dm, totalSteps, binDist, False)
simulator = MonteCarloSimulator(dm, totalSteps, numSim)

for reg_p in regimes_P:
    for reg_c in regimes_C:
        if reg_p is not 'limited':
            dm.regime_P(reg_p)
        else:
            dm.regime_P(reg_p, limitedRegimePatNum)

        if reg_c is not 'dense':
            dm.regime_C(reg_c)
        else:
            dm.regime_C(reg_c, denseRegimeExpRate)

        dm._init_memMat()
Exemple #4
0
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 15 18:01:49 2019

@author: Jerry
"""

from GRN import DynamicModel, Recoder

N = 2000
alpha = 0.03
avgDegree = 1000
temperature = 0.00
totalSteps = 90
binDist = 20
dm = DynamicModel(temperature, N, avgDegree, alpha)
re = Recoder(dm, totalSteps, binDist)

multi_overlap_observation = Recoder.multi_observation(6)(
    Recoder.hamming_overlap)
multi_overlap_observation(re)
re.plot()

mean_overlap_observation = Recoder.observation_mean(Recoder.hamming_overlap)
mean_overlap_observation(re)
re.plot()

dist = Recoder.distribution(Recoder.hamming_overlap)
dist(re)
re.hist()
Exemple #5
0
regimes_C = ['sparse', 'extreme_dilution', 'dense']
figFile = r'E:\KCL\FinalProject\figures\withExt\trials_1\alpha_1_C_3/'

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.allocator_type = 'BFC'
config.gpu_options.per_process_gpu_memory_fraction = 0.95

dm = DynamicModel(temperature,
                  N,
                  avgDegree,
                  alpha,
                  tfConfig=config,
                  gamma=gamma,
                  withExt=False)
re = Recoder(dm, totalSteps, binDist, False)
simulator = MonteCarloSimulator(dm, totalSteps, numSim)

for reg_p in regimes_P:
    for reg_c in regimes_C:
        if reg_p is not 'limited':
            dm.regime_P(reg_p)
        else:
            dm.regime_P(reg_p, limitedRegimePatNum)

        if reg_c is not 'dense':
            dm.regime_C(reg_c)
        else:
            dm.regime_C(reg_c, denseRegimeExpRate)

        dm._init_memMat()
numSim = 70

config = tf.ConfigProto()
config.gpu_options.allow_growth=True
config.gpu_options.allocator_type = 'BFC'
config.gpu_options.per_process_gpu_memory_fraction = 0.95

dm = DynamicModel(temperature,
                  N,
                  avgDegree,
                  alpha,
                  ifDeco=False,
                  tfConfig=config,
                  withExt=False)
recorder = Recoder(dm,
                   totalSteps,
                   binDist)
simulator = MonteCarloSimulator(dm,
                                totalSteps,
                                numSim)
matShape = (totalSteps, dm.P)
compute_observable_matrix = Recoder.observable_matrix(recorder,
                                                      simulator,
                                                      matShape,
                                                      True)(Recoder.hamming_overlap)

for n in range(totalSteps):
    simulator.simulation(runByStep=True)

compute_observable_matrix()
resMat = recorder.disMat
Exemple #7
0
"""
import tensorflow as tf
from GRN import DynamicModel,Recoder

N = 2000
alpha = 0.09
avgDegree = 3
temperature = 0.0
totalSteps = 50
binDist = 20
runTimes = 1

config = tf.ConfigProto()
config.gpu_options.allow_growth=True
config.gpu_options.allocator_type = 'BFC'
config.gpu_options.per_process_gpu_memory_fraction = 0.95

dm = DynamicModel(temperature,
                  N,
                  avgDegree,
                  alpha,
                  ifDeco=False,
                  tfConfig=config,
                  withExt=True)
re = Recoder(dm,totalSteps,binDist,False)
multi_overlap_observation = Recoder.multi_observation(55)(Recoder.hamming_overlap)

for n in range(runTimes):
    multi_overlap_observation(re)
    re.plot()
    print("activity level: ",re.activity)