Exemple #1
0
    def test_no_dof(self):
        TOL = 1E-10

        v = ureal(4.999, 0.0032, independent=False)
        i = ureal(0.019661, 0.0000095, independent=False)
        phi = ureal(1.04446, 0.00075, independent=False)

        set_correlation(-0.36, v, i)
        set_correlation(0.86, v, phi)
        set_correlation(-0.65, i, phi)

        r = v * cos(phi) / i
        x = v * sin(phi) / i
        z = v / i

        equivalent(uncertainty(r), 0.0699787279884, TOL)
        equivalent(uncertainty(x), 0.295716826846, TOL)
        equivalent(uncertainty(z), 0.236602971835, TOL)

        equivalent(math.sqrt(welch_satterthwaite(r)[0]), uncertainty(r), TOL)
        equivalent(math.sqrt(welch_satterthwaite(x)[0]), uncertainty(x), TOL)
        equivalent(math.sqrt(welch_satterthwaite(z)[0]), uncertainty(z), TOL)

        equivalent(get_correlation(r, x), -0.591484610819, TOL)
        equivalent(get_correlation(x, z), 0.992797472722, TOL)
        equivalent(get_correlation(r, z), -0.490623905441, TOL)
Exemple #2
0
    def test_with_dof_2(self):
        """
        Same test as above, but now ensure that the 
        ensemble calculation can deal with influences 
        that are not in sequence
        """
        TOL = 1E-10

        # The dummy variables mean that those included
        # in the ensemble will not be a consecutive
        # series of IDs, provided we include the
        # dummies in the equations, as is done below
        # with zero weight.
        v = ureal(4.999, 0.0032, 5, independent=False)
        dummy_1 = ureal(1, 1)
        i = ureal(0.019661, 0.0000095, 5, independent=False)
        dummy_2 = ureal(1, 1)
        phi = ureal(1.04446, 0.00075, 5, independent=False)
        dummy_3 = ureal(1, 1)

        real_ensemble([v, i, phi], 5)

        set_correlation(-0.36, v, i)
        set_correlation(0.86, v, phi)
        set_correlation(-0.65, i, phi)

        r = v * cos(phi) / i + (0 * dummy_1)
        x = v * sin(phi) / i + (0 * dummy_2)
        z = v / i + (0 * dummy_3)

        # The presence of finite DoF should not alter previous results
        equivalent(uncertainty(r), 0.0699787279884, TOL)
        equivalent(uncertainty(x), 0.295716826846, TOL)
        equivalent(uncertainty(z), 0.236602971835, TOL)

        equivalent(math.sqrt(welch_satterthwaite(r)[0]), uncertainty(r), TOL)
        equivalent(math.sqrt(welch_satterthwaite(x)[0]), uncertainty(x), TOL)
        equivalent(math.sqrt(welch_satterthwaite(z)[0]), uncertainty(z), TOL)

        equivalent(get_correlation(r, x), -0.591484610819, TOL)
        equivalent(get_correlation(x, z), 0.992797472722, TOL)
        equivalent(get_correlation(r, z), -0.490623905441, TOL)

        equivalent(dof(r), 5, TOL)
        equivalent(dof(x), 5, TOL)
        equivalent(dof(z), 5, TOL)
Exemple #3
0
    def test_with_dof(self):
        TOL = 1E-10

        # The old way!
        # NB, I think there are now multiple instances of this test
        # v = ureal(4.999,0.0032,5,independent=False)
        # i = ureal(0.019661,0.0000095,5,independent=False)
        # phi = ureal(1.04446,0.00075,5,independent=False)

        v, i, phi = multiple_ureal([4.999, 0.019661, 1.04446],
                                   [0.0032, 0.0000095, 0.00075], 5)

        set_correlation(-0.36, v, i)
        set_correlation(0.86, v, phi)
        set_correlation(-0.65, i, phi)

        r = v * cos(phi) / i
        x = v * sin(phi) / i
        z = v / i

        # The presence of finite DoF should not alter previous results
        equivalent(uncertainty(r), 0.0699787279884, TOL)
        equivalent(uncertainty(x), 0.295716826846, TOL)
        equivalent(uncertainty(z), 0.236602971835, TOL)

        equivalent(math.sqrt(welch_satterthwaite(r)[0]), uncertainty(r), TOL)
        equivalent(math.sqrt(welch_satterthwaite(x)[0]), uncertainty(x), TOL)
        equivalent(math.sqrt(welch_satterthwaite(z)[0]), uncertainty(z), TOL)

        equivalent(get_correlation(r, x), -0.591484610819, TOL)
        equivalent(get_correlation(x, z), 0.992797472722, TOL)
        equivalent(get_correlation(r, z), -0.490623905441, TOL)

        equivalent(dof(r), 5, TOL)
        equivalent(dof(x), 5, TOL)
        equivalent(dof(z), 5, TOL)

        # Add another influence and it breaks again, but earlier results OK
        f = ureal(1, 0.0032, 5, independent=False)
        self.assertRaises(RuntimeError, set_correlation, 0.3, f, i)

        equivalent(dof(r), 5, TOL)
        equivalent(dof(x), 5, TOL)
        equivalent(dof(z), 5, TOL)
Exemple #4
0
    def test_with_dof_multiple_ureal(self):
        TOL = 1E-10

        x = [4.999, 0.019661, 1.04446]
        u = [0.0032, 0.0000095, 0.00075]
        labels = ['v', 'i', 'phi']

        v, i, phi = multiple_ureal(x, u, 5, labels)

        set_correlation(-0.36, v, i)
        set_correlation(0.86, v, phi)
        set_correlation(-0.65, i, phi)

        r = v * cos(phi) / i
        x = v * sin(phi) / i
        z = v / i

        # The presence of finite DoF should not alter previous results
        equivalent(uncertainty(r), 0.0699787279884, TOL)
        equivalent(uncertainty(x), 0.295716826846, TOL)
        equivalent(uncertainty(z), 0.236602971835, TOL)

        equivalent(math.sqrt(welch_satterthwaite(r)[0]), uncertainty(r), TOL)
        equivalent(math.sqrt(welch_satterthwaite(x)[0]), uncertainty(x), TOL)
        equivalent(math.sqrt(welch_satterthwaite(z)[0]), uncertainty(z), TOL)

        equivalent(get_correlation(r, x), -0.591484610819, TOL)
        equivalent(get_correlation(x, z), 0.992797472722, TOL)
        equivalent(get_correlation(r, z), -0.490623905441, TOL)

        # Dof calculation should be legal
        equivalent(dof(r), 5, TOL)
        equivalent(dof(x), 5, TOL)
        equivalent(dof(z), 5, TOL)

        # Add another influence and it breaks again, but earlier results OK
        f = ureal(1, 0.0032, 5, independent=False)
        self.assertRaises(RuntimeError, set_correlation, 0.3, f, i)

        equivalent(dof(r), 5, TOL)
        equivalent(dof(x), 5, TOL)
        equivalent(dof(z), 5, TOL)
Exemple #5
0
    def test(self):
        x = ureal(1, 1, 4)
        self.assertEqual(4, x.df)
        self.assertEqual(4, welch_satterthwaite(x)[1])

        # product with zero values
        x1 = ureal(0, 1, 4)
        x2 = ureal(0, 1, 3)
        y = x1 * x2
        self.assertEqual(0, y.u)
        self.assertTrue(nan is y.df)

        # Pathological case - not sure it can be created in practice
        x1 = ureal(1, 1)
        x2 = UncertainReal._elementary(1, 0, 4, label=None, independent=True)
        x3 = UncertainReal._elementary(1, 0, 3, label=None, independent=True)
        y = x1 + x2 + x3
        self.assertEqual(len(y._u_components), 3)
        self.assertTrue(inf is y.df)