from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
from Dataset import Dataset
from GazeGAN import Gaze_GAN
from config.train_options import TrainOptions

opt = TrainOptions().parse()

os.environ['CUDA_VISIBLE_DEVICES'] = str(opt.gpu_id)

if __name__ == "__main__":

    dataset = Dataset(opt)
    gaze_gan = Gaze_GAN(dataset, opt)
    gaze_gan.build_model()
    gaze_gan.train()
Exemple #2
0
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
from Dataset import Dataset

from GazeGAN import Gaze_GAN
from config.test_options import TestOptions

opt = TestOptions().parse()
os.environ['CUDA_VISIBLE_DEVICES'] = str(opt.gpu_id)

if __name__ == "__main__":

    dataset = Dataset(opt)
    gaze_gan = Gaze_GAN(dataset, opt)
    gaze_gan.build_test_model()
    gaze_gan.test()
import os
from Dataset import Dataset
from config import Config
from GazeGAN import Gaze_GAN

if __name__ == "__main__":

    config = Config()
    print config.exp_name
    if config.CUDA:
        os.environ['CUDA_VISIBLE_DEVICES'] = str(config.gpu_id)

    dataset = Dataset(config)
    gaze_gan = Gaze_GAN(dataset, config)
    gaze_gan._init_inception()
    gaze_gan.build_model()

    if config.is_training:
        gaze_gan.train()
    else:
        gaze_gan.test()
Exemple #4
0
    #         ###output_data = gaze_gan.test_webcam(input_data)

    img = cv2.imread('dataset/CustomData/IMG/0040a.jpg')

    # while(1):
    #     cv2.imshow('IMG', img)
    #     if cv2.waitKey(1) & 0xFF == ord('q'):
    #         break

    input_data = (img, 92, 107, 175, 103)

    cap.release()
    cv2.destroyAllWindows()

    ## RUN TEST
    dataset = Dataset(opt)
    gaze_gan = Gaze_GAN(dataset, opt)
    gaze_gan.build_test_model()

    return_output = gaze_gan.test_webcam(input_data)
    final_output = (return_output + 1.0)
    print(final_output)
    final_output = final_output * 127.5
    final_output = np.array(final_output, dtype=np.uint8)
    print(final_output)

    while (1):
        cv2.imshow('IMG', final_output)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
import os
import time
from Dataset import Dataset
from GazeGAN import Gaze_GAN
from OpenVinoGazeCorrection import openVinoGazeGan
from config.train_options import TrainOptions

opt = TrainOptions().parse()

os.environ['CUDA_VISIBLE_DEVICES'] = str(opt.gpu_id)

if __name__ == "__main__":

    dataset = Dataset(opt)
    start_time = time.time()
    gaze_gan = Gaze_GAN(dataset, opt)
    gaze_gan.build_test_model()
    gaze_gan.test(freeze_model=False,
                  flag_save_images=True,
                  custom_dataset=True,
                  num_custom_images=10)
    print(
        "\n \n OUTER Time elapsed in GazeGan inference using TF of 3451 images = ",
        time.time() - start_time)
    start_time = time.time()
    openVinoGazeGan.main(dataset,
                         opt,
                         save_images=True,
                         custom_dataset=True,
                         num_custom_images=10)
    print("\n \n OUTER Time elapsed in OV inference of 3451 images = ",