def __addCompanyList(list, dataset):
    df = dataset
    for i in range(0, len(df)):
        item = stock.Stock_company()
        item.ts_code = df.iat[i, 0]
        item.exchange = df.iat[i, 1]
        item.chairman = df.iat[i, 2]
        item.manager = df.iat[i, 3]
        item.secretary = df.iat[i, 4]
        item.re_capital = util.toFloat(df.iat[i, 5])
        item.setup_date = util.date_cn2us(df.iat[i, 6])
        item.province = df.iat[i, 7]
        item.city = df.iat[i, 8]
        item.introduction = df.iat[i, 9]
        item.website = df.iat[i, 10]
        item.email = df.iat[i, 11]
        item.office = df.iat[i, 12]
        #it is an problem of tushare https://github.com/waditu/tushare/issues/1111
        item.employees = util.toInt(df.iat[i, 14])
        #item.main_business = df.iat[i,13]
        item.main_business = "-"
        #end of the problem.
        item.business_scope = df.iat[i, 15]
        list.append(item)
    return list
Exemple #2
0
def insert_cnstock_fina():
    daystr = util.get_today_datestr()
    cndaystr = util.date_us2cn(daystr)
    stkdao = cdao.cnstock_item_dao()
    stocklist = stkdao.get_all_tscode()
    list = ctu.read_cnstock_fina(stocklist, cndaystr)
    fina_dao = cdao.dao_cnstock_fina()
    fina_dao.add_oneItemEachTime(list)
Exemple #3
0
def insert_cnstock_fina2():
    daystr = util.get_today_datestr()
    cndaystr = util.date_us2cn(daystr)
    stkdao = cdao.cnstock_item_dao()
    sfadao = cdao.dao_cnstock_fina()
    stocklist = stkdao.get_all_tscode()
    existinglist = sfadao.get_existing_tscodelist()
    print('start fina2 insert...')
    for ts_code in stocklist:
        ts_code = ts_code.strip()
        if ts_code not in existinglist:
            list = ctu.read_cnstock_finaone(ts_code, cndaystr)
            sfadao.add_cnstock_fina(list)
def update_cnstock_basic2(list, trade_date):
    pro = get_tushare_api()
    dt_basic = pro.daily_basic(
        ts_code='',
        trade_date=trade_date,
        fields='ts_code, trade_date, turnover_rate, volume_ratio, pe')
    for i in range(0, len(dt_basic)):
        for item in list:
            if item.ts_code == dt_basic.iat[
                    i, 0] and item.trade_date == util.date_cn2us(
                        dt_basic.iat[i, 1]):
                item.turnover_rate = util.toFloat(dt_basic.iat[i, 2])
                item.volume_ratio = util.toFloat(dt_basic.iat[i, 3])
                item.pe = util.toFloat(dt_basic.iat[i, 4])
    return list
def read_cnstocklist():
    pro = get_tushare_api()
    data = pro.stock_basic(
        exchange='',
        list_status='L',
        fields=
        'ts_code, name, area, industry, enname, market, exchange, list_status, list_date, is_hs'
    )
    if data.empty:
        print("stock basic list is empty.  tushare.")
    list = []
    for i in range(0, len(data)):
        item = stock.Stock_item()
        item.ts_code = data.iat[i, 0]
        item.name = data.iat[i, 1]
        item.area = data.iat[i, 2]
        item.industry = data.iat[i, 3]
        item.enname = data.iat[i, 4]
        item.market = data.iat[i, 5]
        item.exchange = data.iat[i, 6]
        item.list_status = data.iat[i, 7]
        item.list_date = util.date_cn2us(data.iat[i, 8])
        item.is_hs = data.iat[i, 9]
        list.append(item)
    return list
Exemple #6
0
def ann_predict_cn(filepath):
    #model = ann.create_gru_model()
    #model.load_weights(filepath)
    model = ann.load_mymodel(filepath)
    rs = ann.predict_model_cn(model)
    pred = rs[0]
    sym = rs[1]
    list = []
    for i in range(0, len(pred)):
        item = cstk.Stock_predict()
        item.symbol = str(sym[i])
        item.trade_date = get_latestdatefromdaily_cn(item.symbol)
        item.cal_date = util.get_today_datestr()
        item.result = util.toFloat(pred[i])
        item.comment = 'GRU drop 0.4'
        list.append(item)
    insert_predictresult_cn(list)
 def set_dailydata(self, inputdata, symbol):
     self.openlist = np.array(inputdata['open'], dtype=float)
     self.closelist = np.array(inputdata['close'], dtype=float)
     self.highlist = np.array(inputdata['high'], dtype=float)
     self.lowlist = np.array(inputdata['low'], dtype=float)
     self.vollist = np.array(inputdata['volume'], dtype=float)
     self.length = util.toFloat(len(inputdata['close']))
     self.symbol = symbol
Exemple #8
0
def data_generator(min_index,
                   max_index,
                   shuffle=False,
                   batch_size=32,
                   country='us'):
    #global lock
    if country == 'us':
        symbollist = get_symbolists_us()
    else:
        symbollist = get_symbolists_cn()

    rowcnt = len(symbollist)
    if max_index is None:
        max_index = rowcnt - 1
    if max_index > rowcnt:
        max_index = rowcnt
    if min_index < 0:
        min_index = 0
    if min_index >= max_index:
        min_index = 0
    i = min_index
    while True:
        if shuffle:
            rows = np.random.randint(min_index, max_index, size=batch_size)
        else:
            if i + batch_size >= max_index:
                i = min_index
            rows = np.arange(i, min(i + batch_size, max_index))
            i += len(rows)
        if lock.acquire(1):
            if country == 'us':
                list = get_samplelists_us(symbollist, rows)
            else:
                list = get_samplelists_cn(symbollist, rows)

            samples = np.zeros(
                (len(list), scal.SAMPLE_DATASIZE, scal.FEATURE_NUM))
            targets = np.zeros((len(list), ))
            for j in range(0, len(list)):
                try:
                    samples[j] = np.array(list[j][0])
                    targets[j] = util.toInt(list[j][1])
                except ValueError as err:
                    print(
                        "Cannot broadcast input array into shape(60,26):  %s" %
                        str(err))
            samples = toStandard(samples)
            lock.release()
            yield samples, targets
def create_item_fromdataset(dt_data):
    dt_daily = dt_data
    list = []
    for i in range(0, len(dt_daily)):
        item = stock.Stock_daily()
        item.ts_code = dt_daily.iat[i, 0]
        item.trade_date = util.date_cn2us(dt_daily.iat[i, 1])
        item.open = util.toFloat(dt_daily.iat[i, 2])
        item.high = util.toFloat(dt_daily.iat[i, 3])
        item.low = util.toFloat(dt_daily.iat[i, 4])
        item.close = util.toFloat(dt_daily.iat[i, 5])
        item.pct_chg = util.toFloat(dt_daily.iat[i, 6])
        item.vol = util.toFloat(dt_daily.iat[i, 7])
        item.volume_ratio = 0
        item.turnover_rate = 0
        item.pe = 0
        list.append(item)
    return list
Exemple #10
0
def insert_alldaily_oneday_cn(daystr):
    st_dao = cdao.cnstock_item_dao()
    sd_dao = cdao.cnstock_daily_dao()
    done_list = sd_dao.get_existing_symbollist2(daystr)
    print("the length of donelist: %d" %len(done_list))
    daystr = util.date_us2cn(daystr)
    print("reading %s data from tushare..."%daystr)
    dl = ctu.read_cnstock_daily2(daystr)
    print("the length of read data: %d" %len(dl))
    i = 0
    to_add = []
    for item in dl:
        if item.ts_code not in done_list:
            to_add.append(item)
        else:
            print("%s already exists in database...skipped." %item.ts_code)
            i+=1
    print("totally %d skipped." %i)
    print("totally to be add: %d"%len(to_add))
    print("insert into data base...")
    sd_dao.insert_newlist(to_add)
 def get_turnover(self, country):
     if country == 'us':
         stdb = udbo.dao_ussstock_item()
         rs = stdb.get_marketcap(self.symbol)
         marketcap = util.cmplx_toFloat(rs)
         size = len(self.closelist)
         tr = np.zeros(size, dtype=float)
         for i in range(0, size):
             if marketcap != 0:
                 tr[i] = (self.closelist[i] * self.vollist[i]) / marketcap
             else:
                 tr[i] = 0
         return tr
     else:
         stdb = cdbo.cnstock_daily_dao()
         list = stdb.get_turnoverratio_list(self.symbol)
         if len(list) == len(self.closelist):
             return list
         else:
             print("turnover rate leng != datasize")
             tr = np.zeros(len(self.closelist), dtype=float)
             return tr
Exemple #12
0
def get_onedaily(symbol, trade_date):
    client = get_TiingoClient()
    pr = client.get_ticker_price(symbol, startDate=trade_date, endDate=trade_date,frequency='daily')
    list = []
    for row in pr:
        item = stock.Usstock_daily()
        item.symbol = symbol
        item.trade_date = trade_date
        item.close = util.toFloat(row['close'])
        item.open = util.toFloat(row['open'])
        item.high = util.toFloat(row['high'])
        item.low = util.toFloat(row['low'])
        item.adj_close = util.toFloat(row['adjClose'])
        item.volume = util.toFloat(row['volume'])
        list.append(item)
    print("read data...%s"%(symbol+str(trade_date)))
    return list
Exemple #13
0
def get_daily_bysymbol(smybol):
    df, msg = usstock.get_daily(smybol)
    if df is None or df.empty:
        print("%s Daily data empty." %smybol)
        return None
    df = df.tail(cfg.CONSTANT.DATASIZE)
    data_list = []
    print("reading... %s %s" %(smybol,str(len(df))))
    for i in range(0, len(df)):
        item = stock.Usstock_daily()
        item.symbol = smybol
        item.trade_date = datetime.strptime(df.iat[i,0], '%Y-%m-%d')
        item.open = util.toFloat(df.iat[i,1])
        item.high = util.toFloat(df.iat[i,2])
        item.low = util.toFloat(df.iat[i,3])
        item.close = util.toFloat(df.iat[i,4])
        item.adj_close = util.toFloat(df.iat[i,5])
        item.volume = util.toFloat(df.iat[i,6])
        data_list.append(item)
    return data_list
Exemple #14
0
def us_add_today():
    todaystr = util.get_today_datestr()
    serv.insert_alldaily_oneday_us(todaystr)
Exemple #15
0
def save_model2(model, filename):
    mdf = filename+"_"+util.get_today_datestr()+"_model.h5"
    wtf = filename+"_"+util.get_today_datestr()+"_weight.h5"
    model.save_weights(wtf, overwrite=True)
    model.save(mdf)
Exemple #16
0
def insert_alldaily_today():
    todaystr = util.get_today_datestr()
    insert_alldaily_oneday_us(todaystr)
    insert_alldaily_oneday_cn(todaystr)
def read_cnstock_finaone(ts_code, endday_cnstr):
    pro = get_tushare_api()
    print("reading %s financial indicators from Tushare. " % ts_code)
    df = pro.query('fina_indicator',
                   ts_code=ts_code,
                   start_date='20170101',
                   end_date=endday_cnstr,
                   fields=TUSHARE_FINAFIELDS)
    list = []
    for i in range(0, len(df)):
        item = stock.Stock_fina()
        item.ts_code = df.iat[i, 0]
        item.ann_date = util.date_cn2us(df.iat[i, 1])
        item.end_date = util.date_cn2us(df.iat[i, 2])
        item.eps = util.toFloat(df.iat[i, 3])
        item.dt_eps = util.toFloat(df.iat[i, 4])
        item.total_revenue_ps = util.toFloat(df.iat[i, 5])
        item.revenue_ps = util.toFloat(df.iat[i, 6])
        item.extra_item = util.toFloat(df.iat[i, 7])
        item.profit_dedt = util.toFloat(df.iat[i, 8])
        item.gross_margin = util.toFloat(df.iat[i, 9])
        item.current_ratio = util.toFloat(df.iat[i, 10])
        item.quick_ratio = util.toFloat(df.iat[i, 11])
        item.cash_ratio = util.toFloat(df.iat[i, 12])
        item.assets_turn = util.toFloat(df.iat[i, 13])
        item.interst_income = util.toFloat(df.iat[i, 14])
        item.daa = util.toFloat(df.iat[i, 15])
        item.ebit = util.toFloat(df.iat[i, 16])
        item.ebitda = util.toFloat(df.iat[i, 17])
        item.netdebt = util.toFloat(df.iat[i, 18])
        item.bps = util.toFloat(df.iat[i, 19])
        item.roe = util.toFloat(df.iat[i, 20])
        item.roa = util.toFloat(df.iat[i, 21])
        item.npta = util.toFloat(df.iat[i, 22])
        item.debt_to_assets = util.toFloat(df.iat[i, 23])
        list.append(item)
    return list
Exemple #18
0
def get_oneFina(symbol):
    client = get_TiingoClient()
    tk = yf.Ticker(symbol)
    print(symbol)
    df = tk.financials
    nc = len(df.columns)
    rows, cols = df.shape
    list = []
    for i in range(0, nc):
        item = stock.Usstock_fina()
        item.end_date = util.date_yf2us(df.columns.values[i])
        item.symbol = symbol
        item.total_rev = util.toFloat(df.iat[0, i])
        item.cost_of_rev = util.toFloat(df.iat[1,i])
        item.gross_profit = util.toFloat(df.iat[2,i])
        item.ops_exp = util.toFloat(df.iat[3,i])
        item.r_n_d = util.toFloat(df.iat[4,i])
        item.selling_ga = util.toFloat(df.iat[5,i])
        item.non_rec = util.toFloat(df.iat[6,i])
        item.others = util.toFloat(df.iat[7,i])
        item.total_ops = util.toFloat(df.iat[8,i])
        item.ops_il = util.toFloat(df.iat[9,i])
        item.income_cops = util.toFloat(df.iat[10,i])
        item.total_other = util.toFloat(df.iat[11,i])
        item.ebit = util.toFloat(df.iat[12,i])
        item.interest_exp = util.toFloat(df.iat[13,i])
        item.income_before_tax = util.toFloat(df.iat[14,i])
        item.income_tax_expense = util.toFloat(df.iat[15,i])
        item.min_int = util.toFloat(df.iat[16,i])
        item.net_income_cs  = util.toFloat(df.iat[17,i])
        item.disc_ops = util.toFloat(df.iat[19,i])
        item.extra_items = util.toFloat(df.iat[20,i])
        item.effect_ofac = util.toFloat(df.iat[21,i])
        item.other_items = util.toFloat(df.iat[22,i])
        item.net_income = util.toFloat(df.iat[23,i])
        item.pre_stk = util.toFloat(df.iat[25,i])
        item.net_income_to_cs = util.toFloat(df.iat[26, i])
        list.append(item)
    return list