def __init__(self, Rfree=1.001, CRRA=2):

        PFaux = PerfForesightConsumerType(
        )  # set up a consumer type and use default parameteres
        PFaux.cycles = 0  # Make this type have an infinite horizon
        PFaux.DiscFac = 1 / Rfree
        PFaux.Rfree = Rfree
        PFaux.LivPrb = [1.0]
        PFaux.PermGroFac = [1.0]
        PFaux.CRRA = CRRA
        PFaux.solve()  # solve the consumer's problem
        PFaux.unpackcFunc()  # unpack the consumption function

        self.cFunc = PFaux.solution[0].cFunc
    def __init__(self):

        PFexample = PerfForesightConsumerType(
        )  # set up a consumer type and use default parameteres
        PFexample.cycles = 0  # Make this type have an infinite horizon
        PFexample.DiscFac = 0.05
        PFexample.PermGroFac = [0.7]

        PFexample.solve()  # solve the consumer's problem
        PFexample.unpackcFunc()  # unpack the consumption function

        self.cFunc = PFexample.solution[0].cFunc
        self.a0 = self.cFunc(0)
        self.a1 = self.cFunc(1) - self.cFunc(0)
Exemple #3
0
def plot1(Epsilon, DiscFac, PopGrowth, YearsPerGeneration, Initialk):
    '''Inputs:
        Epsilon: Elasticity of output with respect to capital/labour ratio
        DiscFac: One period discount factor
        YearPerGeneration: No. of years per generation
        PopGrowth: Gross growth rate of population in one period'''
    
    #
    kMax = 0.1
    # Define some parameters
    Beta = DiscFac**YearsPerGeneration
    xi = PopGrowth**YearsPerGeneration
    Q = (1-Epsilon)*(Beta/(1+Beta))/xi
    kBar = Q**(1/(1-Epsilon))
    
    # Create an agent that will solve the consumption problem
    PFagent = PerfForesightConsumerType(**init_perfect_foresight)
    PFagent.cycles = 1 # let the agent live the cycle of periods just once
    PFagent.T_cycle = 2 # Number of periods in the cycle
    PFagent.assign_parameters(PermGroFac = [0.000001]) # Income only in the first period
    PFagent.LivPrb = [1.]
    
    PFagent.DiscFac = Beta
    
    # Hark seems to have trouble with log-utility
    # so pass rho = 1 + something small.
    PFagent.CRRA = 1.001
    
    PFagent.solve()
    
    # Plot the OLG capital accumulation curve and 45 deg line
    plt.figure(figsize=(9,6))
    kt_range = np.linspace(0, kMax, 300)
    
    # Analitical solution plot
    ktp1 = Q*kt_range**Epsilon
    plt.plot(kt_range, ktp1, 'b-', label='Capital accumulation curve')
    plt.plot(kt_range, kt_range, 'k-', label='45 Degree line')
    
    # Plot the path
    kt_ar = Initialk
    ktp1_ar = 0.
    for i in range(3):
        
        # Compute Next Period's capital using HARK
        wage = (1-Epsilon)*kt_ar**Epsilon
        c = PFagent.solution[0].cFunc(wage)
        a = wage - c
        k1 = a/xi
        
        plt.arrow(kt_ar, ktp1_ar, 0., k1-ktp1_ar,
                  length_includes_head=True,
                  lw=0.01,
                  width=0.0005,
                  color='black',
                  edgecolor=None)
        plt.arrow(kt_ar, k1, k1-kt_ar , 0.,
                  length_includes_head=True,
                  lw=0.01,
                  width=0.0005,
                  color='black',
                  edgecolor=None)
        
        # Update arrow
        kt_ar = k1
        ktp1_ar = kt_ar
    
    # Plot kbar and initial k
    plt.plot(kBar, kBar, 'ro', label=r'$\bar{k}$')
    plt.plot(Initialk, 0.0005, 'co', label = '$k_0$')
    
    plt.legend()
    plt.xlim(0 ,kMax)
    plt.ylim(0, kMax)
    plt.xlabel('$k_t$')
    plt.ylabel('$k_{t+1}$')
    plt.show()

    return None
def FisherPlot3(M1, R, Beta, CRRA, c1Max, c2Max):

    # Basic setup of perfect foresight consumer

    # We first create an instance of the class
    # PerfForesightConsumerType, with its standard parameters.
    PFexample = PerfForesightConsumerType()

    PFexample.cycles = 1  # let the agent live the cycle of periods just once
    PFexample.T_cycle = 1  # One single non-terminal period
    PFexample.PermGroFac = [0]  # No income in the second period
    PFexample.LivPrb = [1.]  # No chance of dying before the second period

    # Set interest rate and bank balances from input.
    PFexample.Rfree = R
    PFexample.CRRA = CRRA
    PFexample.DiscFac = Beta

    # Solve the model: this generates the optimal consumption function.

    # Try-except blocks "try" to execute the code in the try block. If an
    # error occurs, the except block is executed and the application does
    # not halt
    try:
        PFexample.solve()
    except:
        print(
            'Those parameter values violate a condition required for solution!'
        )
        return

    # Create the figure
    c1Min = 0.
    c2Min = 0.
    plt.figure(figsize=(8, 8))
    plt.xlabel('Period 1 Consumption $C_1$')
    plt.ylabel('Period 2 Consumption $C_2$')
    plt.ylim([c2Min, c2Max])
    plt.xlim([c1Min, c1Max])

    # Plot the budget constraint
    C1_bc = np.linspace(c1Min, M1, 10, endpoint=True)
    C2_bc = (M1 - C1_bc) * R
    plt.plot(C1_bc, C2_bc, 'k-', label='Budget Constraint')

    # Plot the optimal consumption bundle
    C1 = PFexample.solution[0].cFunc(M1)
    C2 = PFexample.solution[1].cFunc((M1 - C1) * R)
    plt.plot(C1, C2, 'ro', label='Optimal Consumption')

    # Plot the indifference curve
    V = C1**(1 - CRRA) / (1 - CRRA) + Beta * C2**(1 - CRRA) / (
        1 - CRRA)  # Get max utility
    C1_V = np.linspace(((1 - CRRA) * V)**(1 / (1 - CRRA)) + 0.1, c1Max, 1000)
    C2_V = (((1 - CRRA) * V - C1_V**(1 - CRRA)) / Beta)**(1 / (1 - CRRA))
    plt.plot(C1_V, C2_V, 'b-', label='Indiferrence Curve')

    # Add a legend and display the plot
    plt.legend()
    plt.show()

    return None
# %%
# The code below is an example to show you how to plot a set of consumption functions
# for a sequence of values of the discount factor.  You should be
# to adapt this code to solve the rest of the sproblem posed above

howClose=0.01 # How close to come to the limit where the impatience condition fails
DiscFac_min = 0.8
DiscFac_max = DiscFac_lim-howClose # 
numPoints = 10
DiscFac_list = np.linspace(DiscFac_min, DiscFac_max, numPoints) # Create a list of beta values

plt.figure(figsize=((9,6))) # set the plot size

plt.plot(m_range, cSustainable  , 'k', label='Sustainable c') # Add sustainable c line
for i in range(len(DiscFac_list)):
    PFagent.DiscFac = DiscFac_list[i]
    PFagent.solve()
    cHARK = PFagent.solution[0].cFunc(m_range)
    plt.plot(m_range, cHARK, label='Consumption Function, $\\beta$= '+str(PFagent.DiscFac))

PFagent.DiscFac = Params.DiscFac # return discount factor to default value
PFagent.solve() # It's polite to leave the PFagent back with its default solution
plt.xlabel('Market resources m') # x axis label
plt.ylabel('Consumption c')      # y axis label
plt.legend()                     # show legend
plt.show()                       # plot chart


# %%
# Now plot the consumption functions for alternate values of G as described above
# Note the tricky fact that PermGroFac is a list of values because it could