Exemple #1
0
def main():

    # Set targets for K/Y and the Lorenz curve based on the data
    lorenz_target = getLorenzShares(Params.SCF_wealth,weights=Params.SCF_weights,percentiles=Params.percentiles_to_match)
    lorenz_long_data = np.hstack((np.array(0.0),getLorenzShares(Params.SCF_wealth,weights=Params.SCF_weights,percentiles=np.arange(0.01,1.0,0.01).tolist()),np.array(1.0)))
    KY_target = 10.26

    # Make AgentTypes for estimation
    InfiniteType = cstwMPCagent(**Params.init_infinite)
    InfiniteType.AgeDstn = np.array(1.0)
    EstimationAgentList = []
    total_types = 1
    EstimationAgentList.append(deepcopy(InfiniteType))

    # Make an economy for the consumers to live in
    EstimationEconomy = cstwMPCmarket(**Params.init_market)
    EstimationEconomy.agents = EstimationAgentList
    EstimationEconomy.KYratioTarget = KY_target
    EstimationEconomy.LorenzTarget = lorenz_target
    EstimationEconomy.LorenzData = lorenz_long_data
    EstimationEconomy.PopGroFac = 1.0
    EstimationEconomy.TypeWeight = [1.0]
    EstimationEconomy.act_T = Params.T_sim_PY
    EstimationEconomy.ignore_periods = Params.ignore_periods_PY

    # Choose the bounding region for the parameter search
    spec_name = 'BetaDistPY'
    param_name = 'DiscFac'        
    dist_type = 'uniform'
    
    if param_name == 'CRRA':
        param_range = [0.2,70.0]
    elif param_name == 'DiscFac':
        param_range = [0.95,0.99]
    else:
        print('Parameter range for ' + Params.param_name + ' has not been defined!')
        
    # Run the param-point estimation only
    paramPointObjective = lambda center : getKYratioDifference(Economy = EstimationEconomy,
                                        param_name = param_name,
                                        param_count = total_types,
                                        center = center,
                                        spread = 0.0,
                                        dist_type = dist_type)
    t_start = clock()
    center_estimate = brentq(paramPointObjective,param_range[0],param_range[1],xtol=1e-6)
    spread_estimate = 0.0
    t_end = clock()

    # Display statistics about the estimated model
    EstimationEconomy.LorenzBool = True
    EstimationEconomy.ManyStatsBool = True
    EstimationEconomy.distributeParams(param_name,total_types,center_estimate,spread_estimate,dist_type)
    EstimationEconomy.solve()
    EstimationEconomy.calcLorenzDistance()
    print('Estimate is center=' + str(center_estimate) + ', spread=' + str(spread_estimate) + ', took ' + str(t_end-t_start) + ' seconds.')
    EstimationEconomy.center_estimate = center_estimate
    EstimationEconomy.spread_estimate = spread_estimate
    EstimationEconomy.showManyStats(spec_name)
def calcLorenzDistance(SomeTypes):
    '''
    Calculates the Euclidean distance between the simulated and actual (from SCF data) Lorenz curves at the
    20th, 40th, 60th, and 80th percentiles.
    
    Parameters
    ----------
    SomeTypes : [AgentType]
        List of AgentTypes that have been solved and simulated.  Current levels of individual assets should
        be stored in the attribute aLvlNow.
        
    Returns
    -------
    lorenz_distance : float
        Euclidean distance (square root of sum of squared differences) between simulated and actual Lorenz curves.
    '''
    # Define empirical Lorenz curve points
    lorenz_SCF = np.array([-0.00183091, 0.0104425, 0.0552605, 0.1751907])

    # Extract asset holdings from all consumer types
    aLvl_sim = np.concatenate([ThisType.aLvlNow for ThisType in MyTypes])

    # Calculate simulated Lorenz curve points
    lorenz_sim = getLorenzShares(aLvl_sim, percentiles=[0.2, 0.4, 0.6, 0.8])

    # Calculate the Euclidean distance between the simulated and actual Lorenz curves
    lorenz_distance = np.sqrt(np.sum((lorenz_SCF - lorenz_sim)**2))

    # Return the Lorenz distance
    return lorenz_distance
Exemple #3
0
def calculateLorenzDifference(sim_wealth, weights, percentiles, target_levels):
    '''
    Calculates the sum of squared differences between the simulatedLorenz curve
    at the specified percentile levels and the target Lorenz levels.

    Parameters
    ----------
    sim_wealth : numpy.array
        Array with simulated wealth values.
    weights : numpy.array
        List of weights for each row of sim_wealth.
    percentiles : [float]
        Points in the distribution of wealth to match.
    target_levels : np.array
        Actual U.S. Lorenz curve levels at the specified percentiles.

    Returns
    -------
    distance : float
        Sum of squared distances between simulated and target Lorenz curves.
    '''
    sim_lorenz = getLorenzShares(sim_wealth,
                                 weights=weights,
                                 percentiles=percentiles)
    distance = sum((100 * sim_lorenz - 100 * target_levels)**2)
    return distance
Exemple #4
0
def makeLorenzFig(real_wealth, real_weights, sim_wealth, sim_weights):
    '''
    Produces a Lorenz curve for the distribution of wealth, comparing simulated
    to actual data.  A sub-function of makeCSTWresults().

    Parameters
    ----------
    real_wealth : np.array
        Data on household wealth.
    real_weights : np.array
        Weighting array of the same size as real_wealth.
    sim_wealth : np.array
        Simulated wealth holdings of many households.
    sim_weights :np.array
        Weighting array of the same size as sim_wealth.

    Returns
    -------
    these_percents : np.array
        An array of percentiles of households, by wealth.
    real_lorenz : np.array
        Lorenz shares for real_wealth corresponding to these_percents.
    sim_lorenz : np.array
        Lorenz shares for sim_wealth corresponding to these_percents.
    '''
    these_percents = np.linspace(0.0001, 0.9999, 201)
    real_lorenz = getLorenzShares(real_wealth,
                                  weights=real_weights,
                                  percentiles=these_percents)
    sim_lorenz = getLorenzShares(sim_wealth,
                                 weights=sim_weights,
                                 percentiles=these_percents)
    plt.plot(100 * these_percents, real_lorenz, '-k', linewidth=1.5)
    plt.plot(100 * these_percents, sim_lorenz, '--k', linewidth=1.5)
    plt.xlabel('Wealth percentile', fontsize=14)
    plt.ylabel('Cumulative wealth ownership', fontsize=14)
    plt.title('Simulated vs Actual Lorenz Curves', fontsize=16)
    plt.legend(('Actual', 'Simulated'), loc=2, fontsize=12)
    plt.ylim(-0.01, 1)
    plt.show()
    return (these_percents, real_lorenz, sim_lorenz)
Exemple #5
0
def calcCSTWmpcStats(Agents):
    '''
    Calculate and print to screen overall and education-specific aggregate
    wealth to income ratios, as well as the 20th, 40th, 60th, and 80th percentile
    points of the Lorenz curve for (liquid) wealth.
    
    Parameters
    ----------
    Agents : [AgentType]
        List of AgentTypes in the economy.
        
    Returns
    -------
    None
    '''
    yLvlAll = np.concatenate([ThisType.lLvlNow for ThisType in Agents])
    aLvlAll = np.concatenate([ThisType.aLvlNow for ThisType in Agents])
    AgeAll = np.concatenate([ThisType.t_age for ThisType in Agents])
    EducAll = np.concatenate([
        ThisType.EducType * np.ones(ThisType.AgentCount) for ThisType in Agents
    ])
    WeightAll = 1.01**(-0.25 * AgeAll)
    yAgg = np.dot(yLvlAll, WeightAll)
    aAgg = np.dot(aLvlAll, WeightAll)
    yAggD = np.dot(yLvlAll, WeightAll * (EducAll == 0))
    yAggH = np.dot(yLvlAll, WeightAll * (EducAll == 1))
    yAggC = np.dot(yLvlAll, WeightAll * (EducAll == 2))
    aAggD = np.dot(aLvlAll, WeightAll * (EducAll == 0))
    aAggH = np.dot(aLvlAll, WeightAll * (EducAll == 1))
    aAggC = np.dot(aLvlAll, WeightAll * (EducAll == 2))
    LorenzPts = getLorenzShares(aLvlAll,
                                weights=WeightAll,
                                percentiles=[0.2, 0.4, 0.6, 0.8])

    print('Overall aggregate wealth to income ratio is ' + mystr(aAgg / yAgg) +
          ' (target 6.60).')
    print('Aggregate wealth to income ratio for dropouts is ' +
          mystr(aAggD / yAggD) + ' (target 1.60).')
    print('Aggregate wealth to income ratio for high school grads is ' +
          mystr(aAggH / yAggH) + ' (target 3.78).')
    print('Aggregate wealth to income ratio for college grads is ' +
          mystr(aAggC / yAggC) + ' (target 8.84).')
    print('Share of liquid wealth of the bottom 20% is ' +
          mystr(100 * LorenzPts[0]) + '% (target 0.0%).')
    print('Share of liquid wealth of the bottom 40% is ' +
          mystr(100 * LorenzPts[1]) + '% (target 0.4%).')
    print('Share of liquid wealth of the bottom 60% is ' +
          mystr(100 * LorenzPts[2]) + '% (target 2.5%).')
    print('Share of liquid wealth of the bottom 80% is ' +
          mystr(100 * LorenzPts[3]) + '% (target 11.7%).')
Exemple #6
0
 def objectiveFuncWealth(center,spread):
     '''
     Objective function of the beta-dist estimation, similar to cstwMPC.
     Minimizes the distance between simulated and actual 20-40-60-80 Lorenz
     curve points and average wealth to income ratio.
     
     Parameters
     ----------
     center : float
         Mean of distribution of discount factor.
     spread : float
         Half width of span of discount factor.
         
     Returns
     -------
     distance : float
         Distance between simulated and actual moments.
     '''
     DiscFacSet = approxUniform(N=TypeCount,bot=center-spread,top=center+spread)[1]
     for j in range(TypeCount):
         Agents[j](DiscFac = DiscFacSet[j])
         
     multiThreadCommands(Agents,['solve()','initializeSim()','simulate()'])
     aLvl_sim = np.concatenate([agent.aLvlNow for agent in Agents])
     aNrm_sim = np.concatenate([agent.aNrmNow for agent in Agents])
     
     aNrmMean_sim = np.mean(aNrm_sim)
     Lorenz_sim = list(getLorenzShares(aLvl_sim,percentiles=percentile_targets))
     
     moments_sim = np.array([aNrmMean_sim] + Lorenz_sim)
     moments_diff = moments_sim - moments_data
     moments_diff[1:] *= 1 # Rescale Lorenz shares
     distance = np.sqrt(np.dot(moments_diff,moments_diff))
     
     print('Tried center=' + str(center) + ', spread=' + str(spread) + ', got distance=' + str(distance))
     print(moments_sim)
     return distance
Exemple #7
0
print("The mean of individual wealth is "+ str(sim_wealth.mean()) + ";\n the standard deviation is "
      + str(sim_wealth.std())+";\n the median is " + str(np.median(sim_wealth)) +".")

# %% {"code_folding": []}
# Get some tools for plotting simulated vs actual wealth distributions
from HARK.utilities import getLorenzShares, getPercentiles

# The cstwMPC model conveniently has data on the wealth distribution 
# from the U.S. Survey of Consumer Finances
from HARK.cstwMPC.SetupParamsCSTW import SCF_wealth, SCF_weights

# %% {"code_folding": []}
# Construct the Lorenz curves and plot them

pctiles = np.linspace(0.001,0.999,15)
SCF_Lorenz_points = getLorenzShares(SCF_wealth,weights=SCF_weights,percentiles=pctiles)
sim_Lorenz_points = getLorenzShares(sim_wealth,percentiles=pctiles)

# Plot 
plt.figure(figsize=(5,5))
plt.title('Wealth Distribution')
plt.plot(pctiles,SCF_Lorenz_points,'--k',label='SCF')
plt.plot(pctiles,sim_Lorenz_points,'-b',label='Benchmark KS')
plt.plot(pctiles,pctiles,'g-.',label='45 Degree')
plt.xlabel('Percentile of net worth')
plt.ylabel('Cumulative share of wealth')
plt.legend(loc=2)
plt.ylim([0,1])
make_figs('wealth_distribution_1', True, False)
# remark.show('')
def runRoszypalSchlaffmanExperiment(CorrAct, CorrPcvd, DiscFac_center, DiscFac_spread, numTypes, simPeriods):
    '''
    Solve and simulate a consumer type who misperceives the extent of serial correlation
    of persistent shocks to income.
    
    Parameters
    ----------
    CorrAct : float
        Serial correlation coefficient for *actual* persistent income.
    CorrPcvd : float
        List or array of *perceived* persistent income serial correlation
    DiscFac_center : float
        A measure of centrality for the distribution of the beta parameter, DiscFac.
    DiscFac_spread : float
        A measure of spread or diffusion for the distribution of the beta parameter.
    numTypes: int
        Number of different types of agents (distributed using DiscFac_center and DiscFac_spread)
    simPeriods: int
        Number of periods to simulate before calculating distributions

    Returns
    -------
    AggWealthRatio: float
        Ratio of Aggregate wealth to income.
    Lorenz: numpy.array
        A list of two 1D array representing the Lorenz curve for assets in the most recent simulated period.
    Gini: float
        Gini coefficient for assets in the most recent simulated period.
    Avg_MPC: numpy.array
        Average marginal propensity to consume by income quintile in the latest simulated period.
    
    '''     
    
    # Make a dictionary to construct our consumer type
    ThisDict = copy(BaselineDict)
    ThisDict['PrstIncCorr'] = CorrAct
    
    # Make a N=numTypes point approximation to a uniform distribution of DiscFac
    DiscFac_list = approxUniform(N=numTypes,bot=DiscFac_center-DiscFac_spread,top=DiscFac_center+DiscFac_spread)[1]
    
    type_list = []
    # Make a PersistentShockConsumerTypeX for each value of beta saved in DiscFac_list
    for i in range(len(DiscFac_list)):    
        ThisDict['DiscFac'] = DiscFac_list[i]    
        ThisType = PersistentShockConsumerTypeX(**ThisDict)
              
        # Make the consumer *believe* he will face a different level of persistence
        ThisType.PrstIncCorr = CorrPcvd
        ThisType.updatepLvlNextFunc() # *thinks* E[p_{t+1}] as a function of p_t is different than it is
    
        # Solve the consumer's problem with *perceived* persistence 
        ThisType.solve()
    
        # Make the consumer type experience the true level of persistence during simulation
        ThisType.PrstIncCorr = CorrAct
        ThisType.updatepLvlNextFunc()
    
        # Simulate the agents for many periods
        ThisType.T_sim = simPeriods
        #ThisType.track_vars = ['cLvlNow','aLvlNow','pLvlNow','MPCnow']
        ThisType.initializeSim()
        ThisType.simulate()
        type_list.append(ThisType)
    
    # Get the most recent simulated values of X = cLvlNow, MPCnow, aLvlNow, pLvlNow for all types   
    cLvl_all = np.concatenate([ThisType.cLvlNow for ThisType in type_list])
    aLvl_all = np.concatenate([ThisType.aLvlNow for ThisType in type_list])
    MPC_all = np.concatenate([ThisType.MPCnow for ThisType in type_list])
    pLvl_all = np.concatenate([ThisType.pLvlNow for ThisType in type_list])
    
    # The ratio of aggregate assets over the income
    AggWealthRatio = np.mean(aLvl_all) / np.mean(pLvl_all)

    # first 1D array: Create points in the range (0,1)
    wealth_percentile = np.linspace(0.001,0.999,201)

    # second 1D array: Compute Lorenz shares for the created points
    Lorenz_init = getLorenzShares(aLvl_all, percentiles=wealth_percentile)

    # Stick 0 and 1 at the boundaries of both arrays to make it inclusive on the range [0,1]
    Lorenz_init = np.concatenate([[0],Lorenz_init,[1]])
    wealth_percentile = np.concatenate([[0],wealth_percentile,[1]])
    
    # Create a list of wealth_percentile 1D array and Lorenz Shares 1D array
    Lorenz  = np.stack((wealth_percentile, Lorenz_init))

    # Compute the Gini coefficient
    Gini = 1.0 - 2.0*np.mean(Lorenz_init[1])
    
    # Compute the average MPC by income quintile in the latest simulated period
    Avg_MPC = calcSubpopAvg(MPC_all, pLvl_all, cutoffs=[(0.0,0.2), (0.2,0.4),  (0.4,0.6), (0.6,0.8), (0.8,1.0)])
    
    return AggWealthRatio, Lorenz, Gini, Avg_MPC
Exemple #9
0
    def calcStats(self, aLvlNow, pLvlNow, MPCnow, lIncomeLvl, EmpNow, t_age,
                  LorenzBool, ManyStatsBool):
        '''
        Calculate various statistics about the current population in the economy.
        
        Parameters
        ----------
        aLvlNow : [np.array]
            Arrays with end-of-period assets, listed by each ConsumerType in self.agents.
        pLvlNow : [np.array]
            Arrays with permanent income levels, listed by each ConsumerType in self.agents.
        MPCnow : [np.array]
            Arrays with marginal propensity to consume, listed by each ConsumerType in self.agents.
        lIncomeLvl : [np.array]
            Arrays with labor income levels, listed by each ConsumerType in self.agents.
        EmpNow : [np.array]
            Arrays with employment states: True if employed, False otherwise.
        t_age : [np.array]
            Arrays with periods elapsed since model entry, listed by each ConsumerType in self.agents.
        LorenzBool: bool
            Indicator for whether the Lorenz target points should be calculated.  Usually False,
            only True when DiscFac has been identified for a particular nabla.
        ManyStatsBool: bool
            Indicator for whether a lot of statistics for tables should be calculated. Usually False,
            only True when parameters have been estimated and we want values for tables.
            
        Returns
        -------
        None
        '''
        # Combine inputs into single arrays
        aLvl = np.hstack(aLvlNow)
        pLvl = np.hstack(pLvlNow)
        age = np.hstack(t_age)
        IncLvl = np.hstack(lIncomeLvl)
        Emp = np.hstack(EmpNow)

        # Calculate the capital to income ratio in the economy
        CohortWeight = self.PopGroFac**(-age)
        CapAgg = np.sum(aLvl * CohortWeight)
        IncAgg = np.sum(IncLvl * CohortWeight)
        KtoYnow = CapAgg / IncAgg
        self.KtoYnow = KtoYnow

        # Store Lorenz data if requested
        self.LorenzLong = np.nan
        if LorenzBool:
            order = np.argsort(aLvl)
            aLvl = aLvl[order]
            CohortWeight = CohortWeight[order]
            wealth_shares = getLorenzShares(aLvl,
                                            weights=CohortWeight,
                                            percentiles=self.LorenzPercentiles,
                                            presorted=True)
            self.Lorenz = wealth_shares
            if ManyStatsBool:
                self.LorenzLong = getLorenzShares(aLvl,
                                                  weights=CohortWeight,
                                                  percentiles=np.arange(
                                                      0.01, 1.0, 0.01),
                                                  presorted=True)
        else:
            self.Lorenz = np.nan  # Store nothing if we don't want Lorenz data

        # Calculate a whole bunch of statistics if requested
        if ManyStatsBool:
            # Reshape other inputs
            MPC = np.hstack(MPCnow)

            # Sort other data items if aLvl and CohortWeight were sorted
            if LorenzBool:
                pLvl = pLvl[order]
                MPC = MPC[order]
                IncLvl = IncLvl[order]
                age = age[order]
                Emp = Emp[order]
            aNrm = aLvl / pLvl  # Normalized assets (wealth ratio)

            # Calculate overall population MPC and by subpopulations
            # MPC_cf_BPP is the MPC that is comparable with the empirical estimation method
            MPC_cf_BPP = 1.0 - 0.25 * ((1.0 - MPC) + (1.0 - MPC)**2 +
                                       (1.0 - MPC)**3 + (1.0 - MPC)**4)
            self.MPCall = np.sum(
                MPC_cf_BPP * CohortWeight) / np.sum(CohortWeight)
            employed = Emp
            unemployed = np.logical_not(employed)
            self.MPCbyWealthRatio = calcSubpopAvg(MPC_cf_BPP, aNrm,
                                                  self.cutoffs, CohortWeight)
            self.MPCbyIncome = calcSubpopAvg(MPC_cf_BPP, IncLvl, self.cutoffs,
                                             CohortWeight)

            # Calculate the wealth quintile distribution of "hand to mouth" consumers
            quintile_cuts = getPercentiles(aLvl,
                                           weights=CohortWeight,
                                           percentiles=[0.2, 0.4, 0.6, 0.8])
            wealth_quintiles = np.ones(aLvl.size, dtype=int)
            wealth_quintiles[aLvl > quintile_cuts[0]] = 2
            wealth_quintiles[aLvl > quintile_cuts[1]] = 3
            wealth_quintiles[aLvl > quintile_cuts[2]] = 4
            wealth_quintiles[aLvl > quintile_cuts[3]] = 5
            MPC_cutoff = getPercentiles(
                MPC_cf_BPP, weights=CohortWeight, percentiles=[
                    2.0 / 3.0
                ])  # Looking at consumers with MPCs in the top 1/3
            these = MPC_cf_BPP > MPC_cutoff
            in_top_third_MPC = wealth_quintiles[these]
            temp_weights = CohortWeight[these]
            hand_to_mouth_total = np.sum(temp_weights)
            hand_to_mouth_pct = []
            for q in range(1, 6):
                hand_to_mouth_pct.append(
                    np.sum(temp_weights[in_top_third_MPC == q]) /
                    hand_to_mouth_total)
            self.HandToMouthPct = np.array(hand_to_mouth_pct)

        else:  # If we don't want these stats, just put empty values in history
            self.MPCall = np.nan
            self.MPCunemployed = np.nan
            self.MPCemployed = np.nan
            self.MPCretired = np.nan
            self.MPCbyWealthRatio = np.nan
            self.MPCbyIncome = np.nan
            self.HandToMouthPct = np.nan
Exemple #10
0
def main():

    # Set targets for K/Y and the Lorenz curve based on the data
    lorenz_target = getLorenzShares(Params.SCF_wealth,weights=Params.SCF_weights,percentiles=Params.percentiles_to_match)
    lorenz_long_data = np.hstack((np.array(0.0),getLorenzShares(Params.SCF_wealth,weights=Params.SCF_weights,percentiles=np.arange(0.01,1.0,0.01).tolist()),np.array(1.0)))
    KY_target = 10.26

    # Make AgentTypes for estimation
    InfiniteType = cstwMPCagent(**Params.init_infinite)
    InfiniteType.AgeDstn = np.array(1.0)
    EstimationAgentList = []
    #Rsave_list = [1.015,1.016,1.017,1.018,1.018,1.019,1.019,1.02,1.021,1.021,1.022,1.022,1.023,1.024,1.026] #20percent truncation
    Rsave_list = [1.013,1.015,1.016,1.017,1.018,1.019,1.019,1.02,1.021,1.022,1.023,1.023,1.024,1.026,1.029]  #10percent truncation
    pref_type_count = 3       # Number of discrete beta types in beta-dist
    r_type_count   = len(Rsave_list)       # declare the number of types we want
    total_types = r_type_count * pref_type_count
    for n in range(total_types):
        EstimationAgentList.append(deepcopy(InfiniteType))
    assignRdistribution(EstimationAgentList,Rsave_list)

    # Make an economy for the consumers to live in
    EstimationEconomy = cstwMPCmarket(**Params.init_market)
    EstimationEconomy.agents = EstimationAgentList
    EstimationEconomy.KYratioTarget = KY_target
    EstimationEconomy.LorenzTarget = lorenz_target
    EstimationEconomy.LorenzData = lorenz_long_data
    EstimationEconomy.PopGroFac = 1.0
    EstimationEconomy.TypeWeight = [1.0]
    EstimationEconomy.act_T = Params.T_sim_PY
    EstimationEconomy.ignore_periods = Params.ignore_periods_PY

    # Choose the bounding region for the parameter search
    spec_name = 'BetaDistPY'
    param_name = 'DiscFac'        # Which parameter to introduce heterogeneity in
    dist_type = 'uniform'         # Which type of distribution to use

    if param_name == 'CRRA':
        param_range = [0.2,70.0]
        spread_range = [0.00001,1.0]
    elif param_name == 'DiscFac':
        param_range = [0.95,0.99]
        spread_range = [0,0.02]
    else:
        print('Parameter range for ' + param_name + ' has not been defined!')
        
    # Run the param-dist estimation
    paramDistObjective = lambda spread : findLorenzDistanceAtTargetKY(
                                                    Economy = EstimationEconomy,
                                                    param_name = param_name,
                                                    param_count = total_types,
                                                    center_range = param_range,
                                                    spread = spread,
                                                    dist_type = dist_type)
    t_start = clock()
    spread_estimate = golden(paramDistObjective,brack=spread_range,tol=1e-6)
    center_estimate = EstimationEconomy.center_save
    t_end = clock()

    # Display statistics about the estimated model
    EstimationEconomy.LorenzBool = True
    EstimationEconomy.ManyStatsBool = True
    EstimationEconomy.distributeParams(param_name,total_types,center_estimate,spread_estimate,dist_type)
    EstimationEconomy.solve()
    EstimationEconomy.calcLorenzDistance()
    print('Estimate is center=' + str(center_estimate) + ', spread=' + str(spread_estimate) + ', took ' + str(t_end-t_start) + ' seconds.')
    EstimationEconomy.center_estimate = center_estimate
    EstimationEconomy.spread_estimate = spread_estimate
    EstimationEconomy.showManyStats(spec_name)
Exemple #11
0
def main():

    # Set targets for K/Y and the Lorenz curve based on the data
    if Params.do_liquid:
        lorenz_target = np.array([0.0, 0.004, 0.025,0.117])
        KY_target = 6.60
    else: # This is hacky until I can find the liquid wealth data and import it
        lorenz_target = getLorenzShares(Params.SCF_wealth,weights=Params.SCF_weights,percentiles=Params.percentiles_to_match)
        lorenz_long_data = np.hstack((np.array(0.0),getLorenzShares(Params.SCF_wealth,weights=Params.SCF_weights,percentiles=np.arange(0.01,1.0,0.01).tolist()),np.array(1.0)))
        #lorenz_target = np.array([-0.002, 0.01, 0.053,0.171])
        KY_target = 10.26

    # Make AgentTypes for estimation
    if Params.do_lifecycle:
        DropoutType = cstwMPCagent(**Params.init_dropout)
        DropoutType.AgeDstn = calcStationaryAgeDstn(DropoutType.LivPrb,True)
        HighschoolType = deepcopy(DropoutType)
        HighschoolType(**Params.adj_highschool)
        HighschoolType.AgeDstn = calcStationaryAgeDstn(HighschoolType.LivPrb,True)
        CollegeType = deepcopy(DropoutType)
        CollegeType(**Params.adj_college)
        CollegeType.AgeDstn = calcStationaryAgeDstn(CollegeType.LivPrb,True)
        DropoutType.update()
        HighschoolType.update()
        CollegeType.update()
        EstimationAgentList = []
        for n in range(Params.pref_type_count):
            EstimationAgentList.append(deepcopy(DropoutType))
            EstimationAgentList.append(deepcopy(HighschoolType))
            EstimationAgentList.append(deepcopy(CollegeType))
    else:
        if Params.do_agg_shocks:
            PerpetualYouthType = cstwMPCagent(**Params.init_agg_shocks)
        else:
            PerpetualYouthType = cstwMPCagent(**Params.init_infinite)
        PerpetualYouthType.AgeDstn = np.array(1.0)
        EstimationAgentList = []
        for n in range(Params.pref_type_count):
            EstimationAgentList.append(deepcopy(PerpetualYouthType))

    # Give all the AgentTypes different seeds
    for j in range(len(EstimationAgentList)):
        EstimationAgentList[j].seed = j

    # Make an economy for the consumers to live in
    EstimationEconomy = cstwMPCmarket(**Params.init_market)
    EstimationEconomy.agents = EstimationAgentList
    EstimationEconomy.KYratioTarget = KY_target
    EstimationEconomy.LorenzTarget = lorenz_target
    EstimationEconomy.LorenzData = lorenz_long_data
    if Params.do_lifecycle:
        EstimationEconomy.PopGroFac = Params.PopGroFac
        EstimationEconomy.TypeWeight = Params.TypeWeight_lifecycle
        EstimationEconomy.T_retire = Params.working_T-1
        EstimationEconomy.act_T = Params.T_sim_LC
        EstimationEconomy.ignore_periods = Params.ignore_periods_LC
    else:
        EstimationEconomy.PopGroFac = 1.0
        EstimationEconomy.TypeWeight = [1.0]
        EstimationEconomy.act_T = Params.T_sim_PY
        EstimationEconomy.ignore_periods = Params.ignore_periods_PY
    if Params.do_agg_shocks:
        EstimationEconomy(**Params.aggregate_params)
        EstimationEconomy.update()
        EstimationEconomy.makeAggShkHist()

    # Estimate the model as requested
    if Params.run_estimation:
        # Choose the bounding region for the parameter search
        if Params.param_name == 'CRRA':
            param_range = [0.2,70.0]
            spread_range = [0.00001,1.0]
        elif Params.param_name == 'DiscFac':
            param_range = [0.95,0.995]
            spread_range = [0.006,0.008]
        else:
            print('Parameter range for ' + Params.param_name + ' has not been defined!')

        if Params.do_param_dist:
            # Run the param-dist estimation
            paramDistObjective = lambda spread : findLorenzDistanceAtTargetKY(
                                                            Economy = EstimationEconomy,
                                                            param_name = Params.param_name,
                                                            param_count = Params.pref_type_count,
                                                            center_range = param_range,
                                                            spread = spread,
                                                            dist_type = Params.dist_type)
            t_start = clock()
            spread_estimate = golden(paramDistObjective,brack=spread_range,tol=1e-4)
            center_estimate = EstimationEconomy.center_save
            t_end = clock()
        else:
            # Run the param-point estimation only
            paramPointObjective = lambda center : getKYratioDifference(Economy = EstimationEconomy,
                                                 param_name = Params.param_name,
                                                 param_count = Params.pref_type_count,
                                                 center = center,
                                                 spread = 0.0,
                                                 dist_type = Params.dist_type)
            t_start = clock()
            center_estimate = brentq(paramPointObjective,param_range[0],param_range[1],xtol=1e-6)
            spread_estimate = 0.0
            t_end = clock()

        # Display statistics about the estimated model
        #center_estimate = 0.986609223266
        #spread_estimate = 0.00853886395698
        EstimationEconomy.LorenzBool = True
        EstimationEconomy.ManyStatsBool = True
        EstimationEconomy.distributeParams(Params.param_name,Params.pref_type_count,center_estimate,spread_estimate,Params.dist_type)
        EstimationEconomy.solve()
        EstimationEconomy.calcLorenzDistance()
        print('Estimate is center=' + str(center_estimate) + ', spread=' + str(spread_estimate) + ', took ' + str(t_end-t_start) + ' seconds.')
        EstimationEconomy.center_estimate = center_estimate
        EstimationEconomy.spread_estimate = spread_estimate
        EstimationEconomy.showManyStats(Params.spec_name)
Exemple #12
0
        j += 1


# Only run below this line if module is run rather than imported:
if __name__ == "__main__":
    # =================================================================
    # ====== Make the list of consumer types for estimation ===========
    #==================================================================

    # Set target Lorenz points and K/Y ratio (MOVE THIS TO SetupParams)
    if Params.do_liquid:
        lorenz_target = np.array([0.0, 0.004, 0.025, 0.117])
        KY_target = 6.60
    else:  # This is hacky until I can find the liquid wealth data and import it
        lorenz_target = getLorenzShares(
            Params.SCF_wealth,
            weights=Params.SCF_weights,
            percentiles=Params.percentiles_to_match)
        #lorenz_target = np.array([-0.002, 0.01, 0.053,0.171])
        KY_target = 10.26

    # Make a vector of initial wealth-to-permanent income ratios
    a_init = drawDiscrete(N=Params.sim_pop_size,
                          P=Params.a0_probs,
                          X=Params.a0_values,
                          seed=Params.a0_seed)

    # Make the list of types for this run, whether infinite or lifecycle
    if Params.do_lifecycle:
        # Make cohort scaling array
        cohort_scale = Params.TFP_growth**(-np.arange(Params.total_T + 1))
        cohort_scale_array = np.tile(
Exemple #13
0
    return AgeDstn


###############################################################################
### ACTUAL WORK BEGINS BELOW THIS LINE  #######################################
###############################################################################

if __name__ == '__main__':

    # Set targets for K/Y and the Lorenz curve based on the data
    if do_liquid:
        lorenz_target = np.array([0.0, 0.004, 0.025, 0.117])
        KY_target = 6.60
    else:  # This is hacky until I can find the liquid wealth data and import it
        lorenz_target = getLorenzShares(
            Params.SCF_wealth,
            weights=Params.SCF_weights,
            percentiles=Params.percentiles_to_match)
        lorenz_long_data = np.hstack(
            (np.array(0.0),
             getLorenzShares(Params.SCF_wealth,
                             weights=Params.SCF_weights,
                             percentiles=np.arange(0.01, 1.0, 0.01).tolist()),
             np.array(1.0)))
        #lorenz_target = np.array([-0.002, 0.01, 0.053,0.171])
        KY_target = 10.26

    # Set total number of simulated agents in the population
    if do_param_dist:
        if do_agg_shocks:
            Population = Params.pop_sim_agg_dist
        else: