def calcKappaMean(DiscFac, nabla): ''' Calculates the average MPC for the given parameters. This is a very small sub-function of sensitivityAnalysis. Parameters ---------- DiscFac : float Center of the uniform distribution of discount factors nabla : float Width of the uniform distribution of discount factors Returns ------- kappa_all : float Average marginal propensity to consume in the population. ''' DiscFac_list = approxUniform(N=Params.pref_type_count, bot=DiscFac - nabla, top=DiscFac + nabla)[1] assignBetaDistribution(est_type_list, DiscFac_list) multiThreadCommandsFake(est_type_list, beta_point_commands) kappa_all = calcWeightedAvg( np.vstack((this_type.kappa_history for this_type in est_type_list)), np.tile(Params.age_weight_all / float(Params.pref_type_count), Params.pref_type_count)) return kappa_all
def calcKappaMean(DiscFac,nabla): ''' Calculates the average MPC for the given parameters. This is a very small sub-function of sensitivityAnalysis. Parameters ---------- DiscFac : float Center of the uniform distribution of discount factors nabla : float Width of the uniform distribution of discount factors Returns ------- kappa_all : float Average marginal propensity to consume in the population. ''' DiscFac_list = approxUniform(N=Params.pref_type_count,bot=DiscFac-nabla,top=DiscFac+nabla)[1] assignBetaDistribution(est_type_list,DiscFac_list) multiThreadCommandsFake(est_type_list,beta_point_commands) kappa_all = calcWeightedAvg(np.vstack((this_type.kappa_history for this_type in est_type_list)), np.tile(Params.age_weight_all/float(Params.pref_type_count), Params.pref_type_count)) return kappa_all
def makeCSTWresults(DiscFac, nabla, save_name=None): ''' Produces a variety of results for the cstwMPC paper (usually after estimating). Parameters ---------- DiscFac : float Center of the uniform distribution of discount factors nabla : float Width of the uniform distribution of discount factors save_name : string Name to save the calculated results, for later use in producing figures and tables, etc. Returns ------- none ''' DiscFac_list = approxUniform(N=Params.pref_type_count, bot=DiscFac - nabla, top=DiscFac + nabla)[1] assignBetaDistribution(est_type_list, DiscFac_list) multiThreadCommandsFake(est_type_list, beta_point_commands) lorenz_distance = np.sqrt(betaDistObjective(nabla)) makeCSTWstats(DiscFac, nabla, est_type_list, Params.age_weight_all, lorenz_distance, save_name)
def makeCSTWresults(DiscFac,nabla,save_name=None): ''' Produces a variety of results for the cstwMPC paper (usually after estimating). Parameters ---------- DiscFac : float Center of the uniform distribution of discount factors nabla : float Width of the uniform distribution of discount factors save_name : string Name to save the calculated results, for later use in producing figures and tables, etc. Returns ------- none ''' DiscFac_list = approxUniform(N=Params.pref_type_count,bot=DiscFac-nabla,top=DiscFac+nabla)[1] assignBetaDistribution(est_type_list,DiscFac_list) multiThreadCommandsFake(est_type_list,beta_point_commands) lorenz_distance = np.sqrt(betaDistObjective(nabla)) makeCSTWstats(DiscFac,nabla,est_type_list,Params.age_weight_all,lorenz_distance,save_name)
def calcKappaMean(beta,nabla): ''' Calculates the average MPC for the given parameters. This is a very small sub-function of makeCSTWresults(). ''' beta_list = makeUniformDiscreteDistribution(beta,nabla,N=Params.pref_type_count) assignBetaDistribution(est_type_list,beta_list) multiThreadCommandsFake(est_type_list,results_commands) kappa_all = weightedAverageSimData(np.vstack((this_type.kappa_history for this_type in est_type_list)),np.tile(Params.age_weight_short/float(Params.pref_type_count),Params.pref_type_count)) return kappa_all
def simulateKYratioDifference(beta,nabla,N,type_list,weights,total_output,target): ''' Assigns a uniform distribution over beta with width 2*nabla and N points, then solves and simulates all agent types in type_list and compares the simuated K/Y ratio to the target K/Y ratio. ''' if type(beta) in (list,np.ndarray,np.array): beta = beta[0] beta_list = makeUniformDiscreteDistribution(beta,nabla,N) assignBetaDistribution(type_list,beta_list) multiThreadCommandsFake(type_list,beta_point_commands) my_diff = calculateKYratioDifference(np.vstack((this_type.W_history for this_type in type_list)),np.tile(weights/float(N),N),total_output,target) #print('Tried beta=' + str(beta) + ', nabla=' + str(nabla) + ', got diff=' + str(my_diff)) return my_diff
def simulateKYratioDifference(DiscFac, nabla, N, type_list, weights, total_output, target): ''' Assigns a uniform distribution over DiscFac with width 2*nabla and N points, then solves and simulates all agent types in type_list and compares the simuated K/Y ratio to the target K/Y ratio. Parameters ---------- DiscFac : float Center of the uniform distribution of discount factors. nabla : float Width of the uniform distribution of discount factors. N : int Number of discrete consumer types. type_list : [cstwMPCagent] List of agent types to solve and simulate after assigning discount factors. weights : np.array Age-conditional array of population weights. total_output : float Total output of the economy, denominator for the K/Y calculation. target : float Target level of capital-to-output ratio. Returns ------- my_diff : float Difference between simulated and target capital-to-output ratios. ''' if type(DiscFac) in (list, np.ndarray, np.array): DiscFac = DiscFac[0] DiscFac_list = approxUniform(N, DiscFac - nabla, DiscFac + nabla)[1] # only take values, not probs assignBetaDistribution(type_list, DiscFac_list) multiThreadCommandsFake(type_list, beta_point_commands) my_diff = calculateKYratioDifference( np.vstack((this_type.W_history for this_type in type_list)), np.tile(weights / float(N), N), total_output, target) return my_diff
def simulateKYratioDifference(DiscFac,nabla,N,type_list,weights,total_output,target): ''' Assigns a uniform distribution over DiscFac with width 2*nabla and N points, then solves and simulates all agent types in type_list and compares the simuated K/Y ratio to the target K/Y ratio. Parameters ---------- DiscFac : float Center of the uniform distribution of discount factors. nabla : float Width of the uniform distribution of discount factors. N : int Number of discrete consumer types. type_list : [cstwMPCagent] List of agent types to solve and simulate after assigning discount factors. weights : np.array Age-conditional array of population weights. total_output : float Total output of the economy, denominator for the K/Y calculation. target : float Target level of capital-to-output ratio. Returns ------- my_diff : float Difference between simulated and target capital-to-output ratios. ''' if type(DiscFac) in (list,np.ndarray,np.array): DiscFac = DiscFac[0] DiscFac_list = approxUniform(N,DiscFac-nabla,DiscFac+nabla)[1] # only take values, not probs assignBetaDistribution(type_list,DiscFac_list) multiThreadCommandsFake(type_list,beta_point_commands) my_diff = calculateKYratioDifference(np.vstack((this_type.W_history for this_type in type_list)), np.tile(weights/float(N),N),total_output,target) return my_diff
def makeValidationFigures(params, use_cohorts): ''' Make several figures that compare simulated outcomes from the estimated model to their data counterparts, for external validation. Parameters ---------- params : np.array Size 33 array of model parameters, like that used for estimation. use_cohorts : bool Indicator for whether or not to model differences across cohorts. Returns ------- None ''' # Make, solve, and simulate the types param_dict = convertVecToDict(params) if use_cohorts: type_list = makeMultiTypeWithCohorts(param_dict) else: type_list = makeMultiTypeSimple(param_dict) for this_type in type_list: this_type.track_vars.append('MedLvlNow') this_type.track_vars.append('iLvlNow') this_type.track_vars.append('HitCfloor') this_type.CalcExpectationFuncs = True this_type.DeleteSolution = False multiThreadCommandsFake(type_list, ['estimationAction()'], num_jobs=5) # Combine simulated data across all types aLvlHist = np.concatenate( [this_type.aLvlNow_hist for this_type in type_list], axis=1) hLvlHist = np.concatenate( [this_type.hLvlNow_hist for this_type in type_list], axis=1) OOPhist = np.concatenate( [this_type.OOPmedNow_hist for this_type in type_list], axis=1) MortHist = np.concatenate( [this_type.DiePrbNow_hist for this_type in type_list], axis=1) WeightHist = np.concatenate( [this_type.CumLivPrb_hist for this_type in type_list], axis=1) MedHist = np.concatenate( [this_type.MedLvlNow_hist for this_type in type_list], axis=1) # Combine data labels across types HealthTert = np.concatenate( [this_type.HealthTert for this_type in type_list]) HealthQuint = np.concatenate( [this_type.HealthQuint for this_type in type_list]) WealthQuint = np.concatenate( [this_type.WealthQuint for this_type in type_list]) IncQuint = np.concatenate( [this_type.IncQuintLong for this_type in type_list]) Sex = np.concatenate([this_type.SexLong for this_type in type_list]) # Combine in-data-span masking array across all types Active = hLvlHist > 0. InDataSpan = np.concatenate( [this_type.InDataSpanArray for this_type in type_list], axis=1) WeightAdj = InDataSpan * WeightHist # For each type, calculate the probability that no health investment is purchased at each age # and the probability the iLvlZeroRate = np.zeros((10, 25)) HitCfloorRate = np.zeros((10, 25)) for j in range(10): this_type = type_list[j] iLvlZero = this_type.iLvlNow_hist == 0. HitCfloor = this_type.HitCfloor_hist == 1. iLvlZeroSum = np.sum(iLvlZero * this_type.CumLivPrb_hist, axis=1) HitCfloorSum = np.sum(HitCfloor * this_type.CumLivPrb_hist, axis=1) PopSum = np.sum(this_type.CumLivPrb_hist, axis=1) iLvlZeroRate[j, :] = iLvlZeroSum / PopSum HitCfloorRate[j, :] = HitCfloorSum / PopSum # Calculate median (pseudo) bank balances for each type bLvl_init_median = np.zeros(10) for n in range(10): bLvl_init_median[n] = np.median( type_list[n].aLvlInit) + type_list[n].IncomeNow[2] # Extract deciles of health by age from the simulated data pctiles = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] SimHealthPctiles = np.zeros((15, len(pctiles))) for t in range(15): SimHealthPctiles[t, :] = getPercentiles(hLvlHist[t, :], weights=WeightAdj[t, :], percentiles=pctiles) # Plot the probability of purchasing zero health investment by age, sex, and income colors = ['b', 'r', 'g', 'c', 'm'] AgeVec = np.linspace(67., 95., num=15) for n in range(5): plt.plot(AgeVec, iLvlZeroRate[n, :15], '-' + colors[n]) plt.xlabel('Age') plt.ylabel(r'Prob[$n_{it}=0$]') plt.title('Probability of Buying No Health Investment, Women') plt.legend([ 'Bottom quintile', 'Second quintile', 'Third quintile', 'Fourth quintile', 'Top quintile' ]) plt.savefig('../Figures/ZeroInvstWomen.pdf') plt.show() for n in range(5): plt.plot(AgeVec, iLvlZeroRate[n + 5, :15], '-' + colors[n]) plt.xlabel('Age') plt.ylabel(r'Prob[$n_{it}=0$]') plt.title('Probability of Buying No Health Investment, Men') plt.savefig('../Figures/ZeroInvstMen.pdf') plt.show() # Plot the probability of hitting the consumption floor by age, sex, and income colors = ['b', 'r', 'g', 'c', 'm'] AgeVec = np.linspace(67., 95., num=15) for n in range(5): plt.plot(AgeVec, HitCfloorRate[n, :15], '-' + colors[n]) plt.xlabel('Age') plt.ylabel(r'Prob[$c_{it}={c}$]') plt.title('Probability of Using Consumption Floor, Women') plt.legend([ 'Bottom quintile', 'Second quintile', 'Third quintile', 'Fourth quintile', 'Top quintile' ]) plt.savefig('../Figures/cFloorWomen.pdf') plt.show() for n in range(5): plt.plot(AgeVec, HitCfloorRate[n + 5, :15], '-' + colors[n]) plt.xlabel('Age') plt.ylabel(r'Prob[$c_{it}={c}$]') plt.title('Probability of Using Consumption Floor, Men') plt.savefig('../Figures/cFloorMen.pdf') plt.show() # Plot health investment as a function of market resources by type, holding h and Dev fixed B = np.linspace(1., 50., 201) some_ones = np.ones_like(B) hLvl = 0.6 Dev = 0.0 t = 0 Age = str(65 + 2 * t) for i in range(5): this_type = type_list[i] MedShk = np.exp(this_type.MedShkMeanFunc[t](hLvl) + Dev * this_type.MedShkStdFunc(hLvl)) I = np.maximum( this_type.solution[t].PolicyFunc.iFunc(B, hLvl * some_ones, MedShk * some_ones), 0.0) plt.plot(B, I, '-' + colors[i]) plt.xlabel(r'Bank balances $b_{it}$, \$10,000 (y2000)') plt.ylabel(r'Health investment $n_{it}$, \$10,000 (y2000)') plt.xlim([1., 50.]) plt.ylim([-0.01, 0.65]) #plt.legend(['Bottom quintile','Second quintile','Third quintile','Fourth quintile','Top quintile']) plt.title('Health Investment Function at Age ' + Age + ' by Income, Women') plt.savefig('../Figures/iFuncWomen.pdf') plt.show() for i in range(5): this_type = type_list[i + 5] MedShk = np.exp(this_type.MedShkMeanFunc[t](hLvl) + Dev * this_type.MedShkStdFunc(hLvl)) I = np.maximum( this_type.solution[t].PolicyFunc.iFunc(B, hLvl * some_ones, MedShk * some_ones), 0.0) plt.plot(B, I, '-' + colors[i]) plt.xlabel(r'Bank balances $b_{it}$, \$10,000 (y2000)') plt.ylabel(r'Health investment $n_{it}$, \$10,000 (y2000)') plt.xlim([1., 50.]) plt.ylim([-0.01, 0.65]) plt.legend([ 'Bottom quintile', 'Second quintile', 'Third quintile', 'Fourth quintile', 'Top quintile' ], loc=4) plt.title('Health Investment Function at Age ' + Age + ' by Income, Men') plt.savefig('../Figures/iFuncMen.pdf') plt.show() # Plot PDV of total medical expenses by health at median wealth at age 69-70 by income quintile and sex t = 2 H = np.linspace(0.0, 1.0, 201) for n in range(5): B = bLvl_init_median[n] * np.ones_like(H) M = type_list[n].solution[t].TotalMedPDVfunc(B, H) plt.plot(H, M, color=colors[n]) plt.xlim([0., 1.]) plt.ylim([0., 17]) plt.xlabel(r'Health capital $h_{it}$') plt.ylabel('PDV total medical care, $10,000 (y2000)') plt.legend([ 'Bottom quintile', 'Second quintile', 'Third quintile', 'Fourth quintile', 'Top quintile' ]) plt.title('Total Medical Expenses by Health and Income, Women') plt.savefig('../Figures/TotalMedPDVbyIncomeWomen.pdf') plt.show() for n in range(5, 10): B = bLvl_init_median[n] * np.ones_like(H) M = type_list[n].solution[t].TotalMedPDVfunc(B, H) plt.plot(H, M, color=colors[n - 5]) plt.xlim([0., 1.]) plt.ylim([0., 17]) plt.xlabel(r'Health capital $h_{it}$') plt.ylabel('PDV total medical care, $10,000 (y2000)') #plt.legend(['Bottom quintile','Second quintile','Third quintile','Fourth quintile','Top quintile']) plt.title('Total Medical Expenses by Health and Income, Men') plt.savefig('../Figures/TotalMedPDVbyIncomeMen.pdf') plt.show() # Plot PDV of OOP medical expenses by health at median wealth at age 69-70 by income quintile and sex colors = ['b', 'r', 'g', 'c', 'm'] t = 2 H = np.linspace(0.0, 1.0, 201) for n in range(5): B = bLvl_init_median[n] * np.ones_like(H) M = type_list[n].solution[t].OOPmedPDVfunc(B, H) plt.plot(H, M, color=colors[n]) plt.xlim([0., 1.]) plt.ylim([0., 3.5]) plt.xlabel(r'Health capital $h_{it}$') plt.ylabel('PDV OOP medical expenses, $10,000 (y2000)') #plt.legend(['Bottom quintile','Second quintile','Third quintile','Fourth quintile','Top quintile']) plt.title('OOP Medical Expenses by Health and Income, Women') plt.savefig('../Figures/OOPmedPDVbyIncomeWomen.pdf') plt.show() for n in range(5, 10): B = bLvl_init_median[n] * np.ones_like(H) M = type_list[n].solution[t].OOPmedPDVfunc(B, H) plt.plot(H, M, color=colors[n - 5]) plt.xlim([0., 1.]) plt.ylim([0., 3.5]) plt.xlabel(r'Health capital $h_{it}$') plt.ylabel('PDV total medical care, $10,000 (y2000)') #plt.legend(['Bottom quintile','Second quintile','Third quintile','Fourth quintile','Top quintile']) plt.title('OOP Medical Expenses by Health and Income, Men') plt.savefig('../Figures/OOPmedPDVbyIncomeMen.pdf') plt.show() # Plot life expectancy by health at median wealth at age 69-70 by income quintile and sex colors = ['b', 'r', 'g', 'c', 'm'] t = 2 H = np.linspace(0.0, 1.0, 201) for n in range(5): B = bLvl_init_median[n] * np.ones_like(H) M = type_list[n].solution[t].ExpectedLifeFunc(B, H) plt.plot(H, M, color=colors[n]) plt.xlim([0., 1.]) plt.ylim([0., 20.]) plt.xlabel(r'Health capital $h_{it}$') plt.ylabel('Remaining years of life expectancy') plt.legend([ 'Bottom quintile', 'Second quintile', 'Third quintile', 'Fourth quintile', 'Top quintile' ]) plt.title('Life Expectancy at Age 69 by Health and Income, Women') plt.savefig('../Figures/LifeExpectancybyIncomeWomen.pdf') plt.show() for n in range(5, 10): B = bLvl_init_median[n] * np.ones_like(H) M = type_list[n].solution[t].ExpectedLifeFunc(B, H) plt.plot(H, M, color=colors[n - 5]) plt.xlim([0., 1.]) plt.ylim([0., 20.]) plt.xlabel(r'Health capital $h_{it}$') plt.ylabel('Remaining years of life expectancy') plt.legend([ 'Bottom quintile', 'Second quintile', 'Third quintile', 'Fourth quintile', 'Top quintile' ]) plt.title('Life Expectancy at Age 69 by Health and Income, Men') plt.savefig('../Figures/LifeExpectancybyIncomeMen.pdf') plt.show() # Extract deciles of health from the HRS data DataHealthPctiles = np.zeros((15, len(pctiles))) for t in range(15): these = np.logical_and(Data.AgeBoolArray[:, :, t], Data.Alive) h_temp = Data.h_data[these] DataHealthPctiles[t, :] = getPercentiles(h_temp, percentiles=pctiles) # Plot deciles of health by by age plt.plot(AgeVec, SimHealthPctiles, '-k') plt.plot(AgeVec, DataHealthPctiles, '--k') plt.ylim(0., 1.) plt.ylabel('Health capital $h_{it}$') plt.xlabel('Age') plt.title('Simulated vs Actual Distribution of Health by Age') plt.savefig('../Figures/HealthDistribution.pdf') plt.show() OOPmodFunc = lambda x: np.log(10000 * x) # Extract many percentiles of OOP spending from the simulated data OOP_sim = OOPhist.flatten() Weight_temp = WeightAdj.flatten() CDFvalsSim = np.linspace(0.0001, 0.999, 1000) OOPsimCDF_A0 = getPercentiles(OOP_sim * 10000, weights=Weight_temp, percentiles=CDFvalsSim) OOPsimCDF_B0 = getPercentiles(OOPmodFunc(OOP_sim), weights=Weight_temp, percentiles=CDFvalsSim) # Extract some percentiles of OOP spending from the HRS data these = np.logical_and(Data.Alive, np.logical_not(np.isnan(Data.m_data))) OOP_data = Data.m_data[these] CDFvalsData = np.linspace(0.0001, 0.999, 500) OOPdataCDF_A0 = getPercentiles(OOP_data * 10000, weights=None, percentiles=CDFvalsData) OOPdataCDF_B0 = getPercentiles(OOPmodFunc(OOP_data), weights=None, percentiles=CDFvalsData) # Plot the CDF of log out-of-pocket medical spending plt.subplot(211) plt.title('CDF of OOP Medical Spending') plt.plot(OOPdataCDF_B0, CDFvalsData, '-r') plt.plot(OOPsimCDF_B0, CDFvalsSim, '-b') plt.xlim(8., 11.5) plt.ylim(0.85, 1.0) plt.xticks([ np.log(3000), np.log(6000), np.log(12000), np.log(24000), np.log(48000), np.log(96000) ], ['3000', '6000', '12000', '24000', '48000', '96000']) # Plot the CDF of out-of-pocket medical spending plt.subplot(212) plt.plot(OOPdataCDF_A0, CDFvalsData, '-r') plt.plot(OOPsimCDF_A0, CDFvalsSim, '-b') plt.xlim(0., 3000.) plt.ylim(0.0, 0.9) plt.xlabel('Out-of-pocket medical expenses, biannual') plt.ylabel('Cumulative distribution') plt.legend(['HRS data', 'Model'], loc=4) plt.savefig('../Figures/OOPdistribution.pdf') plt.show() # Calculate the serial correlation of log OOP medical spending in simulated data Med_sim = np.log(10000 * OOPhist + 1.) serial_corr_sim = np.zeros(15) serial_corr_sim_inc = np.zeros((15, 5)) for t in range(15): these = np.logical_and(WeightAdj[t + 1, :] > 0., WeightAdj[t + 1, :] < 1.) # Alive but not the first simulated period Med_t = Med_sim[t + 1, these] Med_tm1 = Med_sim[t, these] weight_reg = WeightAdj[t + 1, these] const_reg = np.ones_like(Med_t) regressors = np.transpose(np.vstack([const_reg, Med_tm1])) temp_model = WLS(Med_t, regressors, weights=weight_reg) temp_results = temp_model.fit() serial_corr_sim[t] = temp_results.rsquared for i in range(5): those = np.logical_and(these, IncQuint == i + 1) Med_t = Med_sim[t + 1, those] Med_tm1 = Med_sim[t, those] weight_reg = WeightAdj[t + 1, those] const_reg = np.ones_like(Med_t) regressors = np.transpose(np.vstack([const_reg, Med_tm1])) temp_model = WLS(Med_t, regressors, weights=weight_reg) temp_results = temp_model.fit() serial_corr_sim_inc[t, i] = temp_results.rsquared # Calculate the serial correlation of log OOP medical spending in HRS data DataExists = np.logical_and(np.logical_not(np.isnan(Data.m_data[:-1, :])), np.logical_not(np.isnan(Data.m_data[1:, :]))) BothAlive = np.logical_and(Data.Alive[:-1, :], Data.Alive[1:, :]) Usable = np.logical_and(DataExists, BothAlive) serial_corr_data = np.zeros(15) serial_corr_data_inc = np.zeros((15, 5)) Med_data = np.log(10000 * Data.m_data + 1.) for t in range(15): these = np.logical_and(Usable, Data.AgeBoolArray[:-1, :, t]) Med_t = Med_data[1:, :][these] Med_tm1 = Med_data[:-1, :][these] const_reg = np.ones_like(Med_t) regressors = np.transpose(np.vstack([const_reg, Med_tm1])) temp_model = OLS(Med_t, regressors) temp_results = temp_model.fit() serial_corr_data[t] = temp_results.rsquared for i in range(5): those = np.logical_and(these, Data.IncQuintBoolArray[:-1, :, i]) Med_t = Med_data[1:, :][those] Med_tm1 = Med_data[:-1, :][those] const_reg = np.ones_like(Med_t) regressors = np.transpose(np.vstack([const_reg, Med_tm1])) temp_model = OLS(Med_t, regressors) temp_results = temp_model.fit() serial_corr_data_inc[t, i] = temp_results.rsquared # Make a plot of serial correlation of OOP medical expenses plt.subplot(3, 2, 1) plt.plot(AgeVec, serial_corr_data, '-r') plt.plot(AgeVec, serial_corr_sim, '-b') plt.ylim(0, 0.5) plt.xticks([]) plt.text(75, 0.4, 'All individuals') plt.subplot(3, 2, 2) plt.plot(AgeVec, serial_corr_data_inc[:, 0], '-r') plt.plot(AgeVec, serial_corr_sim_inc[:, 0], '-b') plt.ylim(0, 0.5) plt.xticks([]) plt.yticks([]) plt.text(70, 0.4, 'Bottom income quintile') plt.subplot(3, 2, 3) plt.plot(AgeVec, serial_corr_data_inc[:, 1], '-r') plt.plot(AgeVec, serial_corr_sim_inc[:, 1], '-b') plt.ylim(0, 0.5) plt.xticks([]) plt.text(67, 0.4, 'Second income quintile') plt.ylabel('$R^2$ of regression of $\log(OOP_{t})$ on $\log(OOP_{t-1})$') plt.subplot(3, 2, 4) plt.plot(AgeVec, serial_corr_data_inc[:, 2], '-r') plt.plot(AgeVec, serial_corr_sim_inc[:, 2], '-b') plt.ylim(0, 0.5) plt.xticks([]) plt.yticks([]) plt.text(70, 0.4, 'Third income quintile') plt.subplot(3, 2, 5) plt.plot(AgeVec, serial_corr_data_inc[:, 3], '-r') plt.plot(AgeVec, serial_corr_sim_inc[:, 3], '-b') plt.ylim(0, 0.5) plt.xlabel('Age') plt.text(70, 0.4, 'Fourth income quintile') plt.subplot(3, 2, 6) plt.plot(AgeVec, serial_corr_data_inc[:, 4], '-r') plt.plot(AgeVec, serial_corr_sim_inc[:, 4], '-b') plt.ylim(0, 0.5) plt.xlabel('Age') plt.yticks([]) plt.text(70, 0.4, 'Top income quintile') plt.savefig('../Figures/SerialCorrOOP.pdf') plt.show() # Make a plot of serial correlation of OOP medical expenses plt.plot(AgeVec + 2, serial_corr_data, '-r') plt.plot(AgeVec + 2, serial_corr_sim, '-b') plt.xlabel('Age') plt.ylabel('$R^2$ of regression of $\log(OOP_{t})$ on $\log(OOP_{t-1})$') plt.legend(['HRS data', 'Model'], loc=1) plt.show() # Calculate mortality probability by age and income quintile in simulated data MortByIncAge_data = Data.MortByIncAge MortByIncAge_sim = np.zeros((5, 15)) MortByAge_sim = np.zeros(15) for t in range(15): THESE = np.logical_and(Active[t, :], InDataSpan[t, :]) Weight = WeightHist[t + 1, THESE] WeightSum = np.sum(Weight) Mort = MortHist[t + 1, THESE] MortByAge_sim[t] = np.dot(Mort, Weight) / WeightSum for i in range(5): right_inc = IncQuint == i + 1 these = np.logical_and(THESE, right_inc) Mort = MortHist[t + 1, these] Weight = WeightHist[t + 1, these] WeightSum = np.sum(Weight) MortByIncAge_sim[i, t] = np.dot(Mort, Weight) / WeightSum # Plot mortality probability by age and income quintile income_colors = ['b', 'r', 'g', 'm', 'c'] for i in range(5): plt.plot(AgeVec, MortByIncAge_sim[i, :] - MortByAge_sim, '-' + income_colors[i]) for i in range(5): plt.plot(AgeVec, MortByIncAge_data[i, :] - MortByAge_sim, '.' + income_colors[i]) plt.xlabel('Age') plt.ylabel('Relative death probability (biannual)') plt.title('Death Probability by Income Quintile') plt.legend([ 'Bottom quintile', 'Second quintile', 'Third quintile', 'Fourth quintile', 'Top quintile' ], loc=2) plt.savefig('../Figures/MortByIncAge.pdf') plt.show() # Plot the 99% confidence band of the health production function mean = np.array([-2.13369276099, 1.71842956397]) covar = np.array([[0.02248322, 0.01628292], [0.01628308, 0.01564192]]) dstn = multivariate_normal(mean, covar) N = 10000 M = 201 draws = dstn.rvs(10000) MedVec = np.linspace(0., 1.5, M) func_data = np.zeros((N, M)) def makeHealthProdFunc(LogSlope, LogCurve): LogJerk = 15.6 tempw = np.exp(LogJerk) HealthProd0 = 1. - tempw tempx = np.exp( LogSlope) # Slope of health production function at iLvl=0 HealthProd2 = np.exp(LogJerk - LogCurve) HealthProdFunc = lambda i: tempx / HealthProd0 * ( (i * HealthProd2**( (1. - HealthProd0) / HealthProd0) + HealthProd2** (1. / HealthProd0))**HealthProd0 - HealthProd2) return HealthProdFunc for n in range(N): f = makeHealthProdFunc(draws[n, 0], draws[n, 1]) func_data[n, :] = f(MedVec) f = makeHealthProdFunc(Params.test_param_vec[25], Params.test_param_vec[26]) CI_array = np.zeros((M, 2)) for m in range(M): CI_array[m, :] = getPercentiles(func_data[:, m], percentiles=[0.025, 0.975]) health_prod = f(MedVec) plt.plot(MedVec, health_prod, '-r') plt.plot(MedVec, CI_array[:, 0], '--k', linewidth=0.5) plt.plot(MedVec, CI_array[:, 1], '--k', linewidth=0.5) plt.xlim([-0.005, 1.5]) plt.ylim([0., None]) plt.xlabel('Health investment $n_{it}$, \$10,000 (y2000)') plt.ylabel('Health produced ') plt.title('Estimated Health Production Function') plt.legend([ 'Estimated health production function', 'Pointwise 95% confidence bounds' ], loc=4) plt.savefig('../Figures/HealthProdFunc.pdf') plt.show()
BasicType.vFuncBool = False # just in case it was set to True above my_agent_list = [] CRRA_list = np.linspace( 1, 8, type_count) # All the values that CRRA will take on for i in range(type_count): this_agent = deepcopy(BasicType) # Make a new copy of the basic type this_agent.assignParameters( CRRA=CRRA_list[i]) # Give it a unique CRRA value my_agent_list.append(this_agent) # Addd it to the list of agent types # Make a list of commands to be run in parallel; these should be methods of ConsumerType do_this_stuff = ['updateSolutionTerminal()', 'solve()', 'unpack_cFunc()'] # Solve the model for each type by looping over the types (not multithreading) start_time = clock() multiThreadCommandsFake(my_agent_list, do_this_stuff) # Fake multithreading, just loops end_time = clock() print('Solving ' + str(type_count) + ' types without multithreading took ' + mystr(end_time - start_time) + ' seconds.') # Plot the consumption functions for all types on one figure plotFuncs([this_type.cFunc[0] for this_type in my_agent_list], 0, 5) # Delete the solution for each type to make sure we're not just faking it for i in range(type_count): my_agent_list[i].solution = None my_agent_list[i].cFunc = None my_agent_list[i].time_vary.remove('solution') my_agent_list[i].time_vary.remove('cFunc')
# Make many copies of the basic type, each with a different risk aversion BasicType.vFuncBool = False # just in case it was set to True above my_agent_list = [] CRRA_list = np.linspace(1,8,type_count) # All the values that CRRA will take on for i in range(type_count): this_agent = deepcopy(BasicType) # Make a new copy of the basic type this_agent.assignParameters(CRRA = CRRA_list[i]) # Give it a unique CRRA value my_agent_list.append(this_agent) # Addd it to the list of agent types # Make a list of commands to be run in parallel; these should be methods of ConsumerType do_this_stuff = ['updateSolutionTerminal()','solve()','unpackcFunc()'] # Solve the model for each type by looping over the types (not multithreading) start_time = clock() multiThreadCommandsFake(my_agent_list, do_this_stuff) # Fake multithreading, just loops end_time = clock() print('Solving ' + str(type_count) + ' types without multithreading took ' + mystr(end_time-start_time) + ' seconds.') # Plot the consumption functions for all types on one figure plotFuncs([this_type.cFunc[0] for this_type in my_agent_list],0,5) # Delete the solution for each type to make sure we're not just faking it for i in range(type_count): my_agent_list[i].solution = None my_agent_list[i].cFunc = None my_agent_list[i].time_vary.remove('solution') my_agent_list[i].time_vary.remove('cFunc') # And here's HARK's initial attempt at multithreading: start_time = clock()
plotFunc(BasicType.solution[0].vFunc,0.2,5) # Make copies of the basic type, each with a different risk aversion BasicType.calc_vFunc = False my_agent_list = [] #rho_list = np.random.permutation(np.linspace(1,8,type_count)) rho_list = np.linspace(1,8,type_count) for i in range(type_count): this_agent = deepcopy(BasicType) this_agent.assignParameters(rho = rho_list[i]) my_agent_list.append(this_agent) do_this_stuff = ['updateSolutionTerminal()','solve()','unpack_cFunc()'] # Solve the model for each type by looping over the types (not multithreading) start_time = time() multiThreadCommandsFake(my_agent_list, do_this_stuff) end_time = time() print('Solving ' + str(type_count) + ' types without multithreading took ' + mystr(end_time-start_time) + ' seconds.') # Plot the consumption functions for all types on one figure plotFuncs([this_type.cFunc[0] for this_type in my_agent_list],0,5) # Delete the solution for each type to make sure we're not just faking it for i in range(type_count): my_agent_list[i].solution = None my_agent_list[i].cFunc = None # And here's my shitty, shitty attempt at multithreading: start_time = time() multiThreadCommands(my_agent_list, do_this_stuff) end_time = time()
def makeCSTWresults(beta,nabla,save_name=None): ''' Produces a variety of results for the cstwMPC paper (usually after estimating). ''' beta_list = makeUniformDiscreteDistribution(beta,nabla,N=Params.pref_type_count) assignBetaDistribution(est_type_list,beta_list) multiThreadCommandsFake(est_type_list,results_commands) lorenz_distance = np.sqrt(betaDistObjective(nabla)) #lorenz_distance = 0.0 if Params.do_lifecycle: # This can probably be removed sim_length = Params.total_T else: sim_length = Params.sim_periods sim_wealth = (np.vstack((this_type.W_history for this_type in est_type_list))).flatten() sim_wealth_short = (np.vstack((this_type.W_history[0:sim_length] for this_type in est_type_list))).flatten() sim_kappa = (np.vstack((this_type.kappa_history for this_type in est_type_list))).flatten() sim_income = (np.vstack((this_type.Y_history[0:sim_length]*np.asarray(this_type.temp_shocks[0:sim_length]) for this_type in est_type_list))).flatten() sim_ratio = (np.vstack((this_type.W_history[0:sim_length]/this_type.Y_history[0:sim_length] for this_type in est_type_list))).flatten() if Params.do_lifecycle: sim_unemp = (np.vstack((np.vstack((this_type.income_unemploy == np.asarray(this_type.temp_shocks[0:Params.working_T]),np.zeros((Params.retired_T,Params.sim_pop_size),dtype=bool))) for this_type in est_type_list))).flatten() sim_emp = (np.vstack((np.vstack((this_type.income_unemploy != np.asarray(this_type.temp_shocks[0:Params.working_T]),np.zeros((Params.retired_T,Params.sim_pop_size),dtype=bool))) for this_type in est_type_list))).flatten() sim_ret = (np.vstack((np.vstack((np.zeros((Params.working_T,Params.sim_pop_size),dtype=bool),np.ones((Params.retired_T,Params.sim_pop_size),dtype=bool))) for this_type in est_type_list))).flatten() else: sim_unemp = np.vstack((this_type.income_unemploy == np.asarray(this_type.temp_shocks[0:sim_length]) for this_type in est_type_list)).flatten() sim_emp = np.vstack((this_type.income_unemploy != np.asarray(this_type.temp_shocks[0:sim_length]) for this_type in est_type_list)).flatten() sim_ret = np.zeros(sim_emp.size,dtype=bool) sim_weight_all = np.tile(np.repeat(Params.age_weight_all,Params.sim_pop_size),Params.pref_type_count) sim_weight_short = np.tile(np.repeat(Params.age_weight_short,Params.sim_pop_size),Params.pref_type_count) if Params.do_beta_dist and Params.do_lifecycle: kappa_mean_by_age_type = (np.mean(np.vstack((this_type.kappa_history for this_type in est_type_list)),axis=1)).reshape((Params.pref_type_count*3,DropoutType.T_total)) kappa_mean_by_age_pref = np.zeros((Params.pref_type_count,DropoutType.T_total)) + np.nan for j in range(Params.pref_type_count): kappa_mean_by_age_pref[j,] = Params.d_pct*kappa_mean_by_age_type[3*j+0,] + Params.h_pct*kappa_mean_by_age_type[3*j+1,] + Params.c_pct*kappa_mean_by_age_type[3*j+2,] kappa_mean_by_age = np.mean(kappa_mean_by_age_pref,axis=0) kappa_lo_beta_by_age = kappa_mean_by_age_pref[0,] kappa_hi_beta_by_age = kappa_mean_by_age_pref[Params.pref_type_count-1,] lorenz_fig_data = makeLorenzFig(Params.SCF_wealth,Params.SCF_weights,sim_wealth,sim_weight_all) mpc_fig_data = makeMPCfig(sim_kappa,sim_weight_short) kappa_all = weightedAverageSimData(np.vstack((this_type.kappa_history for this_type in est_type_list)),np.tile(Params.age_weight_short/float(Params.pref_type_count),Params.pref_type_count)) kappa_unemp = np.sum(sim_kappa[sim_unemp]*sim_weight_short[sim_unemp])/np.sum(sim_weight_short[sim_unemp]) kappa_emp = np.sum(sim_kappa[sim_emp]*sim_weight_short[sim_emp])/np.sum(sim_weight_short[sim_emp]) kappa_ret = np.sum(sim_kappa[sim_ret]*sim_weight_short[sim_ret])/np.sum(sim_weight_short[sim_ret]) my_cutoffs = [(0.99,1),(0.9,1),(0.8,1),(0.6,0.8),(0.4,0.6),(0.2,0.4),(0.0,0.2)] kappa_by_ratio_groups = avgDataSlice(sim_kappa,sim_ratio,my_cutoffs,sim_weight_short) kappa_by_income_groups = avgDataSlice(sim_kappa,sim_income,my_cutoffs,sim_weight_short) quintile_points = extractPercentiles(sim_wealth_short,weights=sim_weight_short,percentiles=[0.2, 0.4, 0.6, 0.8]) wealth_quintiles = np.ones(sim_wealth_short.size,dtype=int) wealth_quintiles[sim_wealth_short > quintile_points[0]] = 2 wealth_quintiles[sim_wealth_short > quintile_points[1]] = 3 wealth_quintiles[sim_wealth_short > quintile_points[2]] = 4 wealth_quintiles[sim_wealth_short > quintile_points[3]] = 5 MPC_cutoff = extractPercentiles(sim_kappa,weights=sim_weight_short,percentiles=[2.0/3.0]) these_quintiles = wealth_quintiles[sim_kappa > MPC_cutoff] these_weights = sim_weight_short[sim_kappa > MPC_cutoff] hand_to_mouth_total = np.sum(these_weights) hand_to_mouth_pct = [] for q in range(5): hand_to_mouth_pct.append(np.sum(these_weights[these_quintiles == (q+1)])/hand_to_mouth_total) results_string = 'Estimate is beta=' + str(beta) + ', nabla=' + str(nabla) + '\n' results_string += 'Lorenz distance is ' + str(lorenz_distance) + '\n' results_string += 'Average MPC for all consumers is ' + mystr(kappa_all) + '\n' results_string += 'Average MPC in the top percentile of W/Y is ' + mystr(kappa_by_ratio_groups[0]) + '\n' results_string += 'Average MPC in the top decile of W/Y is ' + mystr(kappa_by_ratio_groups[1]) + '\n' results_string += 'Average MPC in the top quintile of W/Y is ' + mystr(kappa_by_ratio_groups[2]) + '\n' results_string += 'Average MPC in the second quintile of W/Y is ' + mystr(kappa_by_ratio_groups[3]) + '\n' results_string += 'Average MPC in the middle quintile of W/Y is ' + mystr(kappa_by_ratio_groups[4]) + '\n' results_string += 'Average MPC in the fourth quintile of W/Y is ' + mystr(kappa_by_ratio_groups[5]) + '\n' results_string += 'Average MPC in the bottom quintile of W/Y is ' + mystr(kappa_by_ratio_groups[6]) + '\n' results_string += 'Average MPC in the top percentile of y is ' + mystr(kappa_by_income_groups[0]) + '\n' results_string += 'Average MPC in the top decile of y is ' + mystr(kappa_by_income_groups[1]) + '\n' results_string += 'Average MPC in the top quintile of y is ' + mystr(kappa_by_income_groups[2]) + '\n' results_string += 'Average MPC in the second quintile of y is ' + mystr(kappa_by_income_groups[3]) + '\n' results_string += 'Average MPC in the middle quintile of y is ' + mystr(kappa_by_income_groups[4]) + '\n' results_string += 'Average MPC in the fourth quintile of y is ' + mystr(kappa_by_income_groups[5]) + '\n' results_string += 'Average MPC in the bottom quintile of y is ' + mystr(kappa_by_income_groups[6]) + '\n' results_string += 'Average MPC for the employed is ' + mystr(kappa_emp) + '\n' results_string += 'Average MPC for the unemployed is ' + mystr(kappa_unemp) + '\n' results_string += 'Average MPC for the retired is ' + mystr(kappa_ret) + '\n' results_string += 'Of the population with the 1/3 highest MPCs...' + '\n' results_string += mystr(hand_to_mouth_pct[0]*100) + '% are in the bottom wealth quintile,' + '\n' results_string += mystr(hand_to_mouth_pct[1]*100) + '% are in the second wealth quintile,' + '\n' results_string += mystr(hand_to_mouth_pct[2]*100) + '% are in the third wealth quintile,' + '\n' results_string += mystr(hand_to_mouth_pct[3]*100) + '% are in the fourth wealth quintile,' + '\n' results_string += 'and ' + mystr(hand_to_mouth_pct[4]*100) + '% are in the top wealth quintile.' + '\n' print(results_string) if save_name is not None: with open('./Results/' + save_name + 'LorenzFig.txt','w') as f: my_writer = csv.writer(f, delimiter='\t',) for j in range(len(lorenz_fig_data[0])): my_writer.writerow([lorenz_fig_data[0][j], lorenz_fig_data[1][j], lorenz_fig_data[2][j]]) f.close() with open('./Results/' + save_name + 'MPCfig.txt','w') as f: my_writer = csv.writer(f, delimiter='\t') for j in range(len(mpc_fig_data[0])): my_writer.writerow([lorenz_fig_data[0][j], mpc_fig_data[1][j]]) f.close() if Params.do_beta_dist and Params.do_lifecycle: with open('./Results/' + save_name + 'KappaByAge.txt','w') as f: my_writer = csv.writer(f, delimiter='\t') for j in range(len(kappa_mean_by_age)): my_writer.writerow([kappa_mean_by_age[j], kappa_lo_beta_by_age[j], kappa_hi_beta_by_age[j]]) f.close() with open('./Results/' + save_name + 'Results.txt','w') as f: f.write(results_string) f.close()
Target level of capital-to-output ratio. Returns ------- my_diff : float Difference between simulated and target capital-to-output ratios. ''' if type(DiscFac) in (list,np.ndarray,np.array): DiscFac = DiscFac[0] <<<<<<< HEAD DiscFac_list = approxUniform(DiscFac,nabla,N) ======= DiscFac_list = approxUniform(N,DiscFac-nabla,DiscFac+nabla)[1] # only take values, not probs >>>>>>> eeb37f24755d0c683c9d9efbe5e7447425c98b86 assignBetaDistribution(type_list,DiscFac_list) multiThreadCommandsFake(type_list,beta_point_commands) my_diff = calculateKYratioDifference(np.vstack((this_type.W_history for this_type in type_list)), np.tile(weights/float(N),N),total_output,target) return my_diff mystr = lambda number : "{:.3f}".format(number) ''' Truncates a float at exactly three decimal places when displaying as a string. ''' def makeCSTWresults(DiscFac,nabla,save_name=None): ''' Produces a variety of results for the cstwMPC paper (usually after estimating). Parameters