Exemple #1
0
def calcKappaMean(DiscFac, nabla):
    '''
    Calculates the average MPC for the given parameters.  This is a very small
    sub-function of sensitivityAnalysis.
    
    Parameters
    ----------
    DiscFac : float
        Center of the uniform distribution of discount factors
    nabla : float
        Width of the uniform distribution of discount factors
        
    Returns
    -------
    kappa_all : float
        Average marginal propensity to consume in the population.
    '''
    DiscFac_list = approxUniform(N=Params.pref_type_count,
                                 bot=DiscFac - nabla,
                                 top=DiscFac + nabla)[1]
    assignBetaDistribution(est_type_list, DiscFac_list)
    multiThreadCommandsFake(est_type_list, beta_point_commands)

    kappa_all = calcWeightedAvg(
        np.vstack((this_type.kappa_history for this_type in est_type_list)),
        np.tile(Params.age_weight_all / float(Params.pref_type_count),
                Params.pref_type_count))
    return kappa_all
Exemple #2
0
def calcKappaMean(DiscFac,nabla):
    '''
    Calculates the average MPC for the given parameters.  This is a very small
    sub-function of sensitivityAnalysis.
    
    Parameters
    ----------
    DiscFac : float
        Center of the uniform distribution of discount factors
    nabla : float
        Width of the uniform distribution of discount factors
        
    Returns
    -------
    kappa_all : float
        Average marginal propensity to consume in the population.
    '''
    DiscFac_list = approxUniform(N=Params.pref_type_count,bot=DiscFac-nabla,top=DiscFac+nabla)[1]
    assignBetaDistribution(est_type_list,DiscFac_list)
    multiThreadCommandsFake(est_type_list,beta_point_commands)
    
    kappa_all = calcWeightedAvg(np.vstack((this_type.kappa_history for this_type in est_type_list)),
                                np.tile(Params.age_weight_all/float(Params.pref_type_count),
                                        Params.pref_type_count))
    return kappa_all
Exemple #3
0
def makeCSTWresults(DiscFac, nabla, save_name=None):
    '''
    Produces a variety of results for the cstwMPC paper (usually after estimating).
    
    Parameters
    ----------
    DiscFac : float
        Center of the uniform distribution of discount factors
    nabla : float
        Width of the uniform distribution of discount factors
    save_name : string
        Name to save the calculated results, for later use in producing figures
        and tables, etc.
        
    Returns
    -------
    none
    '''
    DiscFac_list = approxUniform(N=Params.pref_type_count,
                                 bot=DiscFac - nabla,
                                 top=DiscFac + nabla)[1]
    assignBetaDistribution(est_type_list, DiscFac_list)
    multiThreadCommandsFake(est_type_list, beta_point_commands)

    lorenz_distance = np.sqrt(betaDistObjective(nabla))

    makeCSTWstats(DiscFac, nabla, est_type_list, Params.age_weight_all,
                  lorenz_distance, save_name)
Exemple #4
0
def makeCSTWresults(DiscFac,nabla,save_name=None):
    '''
    Produces a variety of results for the cstwMPC paper (usually after estimating).
    
    Parameters
    ----------
    DiscFac : float
        Center of the uniform distribution of discount factors
    nabla : float
        Width of the uniform distribution of discount factors
    save_name : string
        Name to save the calculated results, for later use in producing figures
        and tables, etc.
        
    Returns
    -------
    none
    '''
    DiscFac_list = approxUniform(N=Params.pref_type_count,bot=DiscFac-nabla,top=DiscFac+nabla)[1]
    assignBetaDistribution(est_type_list,DiscFac_list)
    multiThreadCommandsFake(est_type_list,beta_point_commands)
    
    lorenz_distance = np.sqrt(betaDistObjective(nabla))
    
    makeCSTWstats(DiscFac,nabla,est_type_list,Params.age_weight_all,lorenz_distance,save_name)   
Exemple #5
0
def calcKappaMean(beta,nabla):
    '''
    Calculates the average MPC for the given parameters.  This is a very small
    sub-function of makeCSTWresults().
    '''
    beta_list = makeUniformDiscreteDistribution(beta,nabla,N=Params.pref_type_count)
    assignBetaDistribution(est_type_list,beta_list)
    multiThreadCommandsFake(est_type_list,results_commands)
    
    kappa_all = weightedAverageSimData(np.vstack((this_type.kappa_history for this_type in est_type_list)),np.tile(Params.age_weight_short/float(Params.pref_type_count),Params.pref_type_count))
    return kappa_all
Exemple #6
0
def simulateKYratioDifference(beta,nabla,N,type_list,weights,total_output,target):
    '''
    Assigns a uniform distribution over beta with width 2*nabla and N points, then
    solves and simulates all agent types in type_list and compares the simuated
    K/Y ratio to the target K/Y ratio.
    '''
    if type(beta) in (list,np.ndarray,np.array):
        beta = beta[0]
    beta_list = makeUniformDiscreteDistribution(beta,nabla,N)
    assignBetaDistribution(type_list,beta_list)
    multiThreadCommandsFake(type_list,beta_point_commands)
    my_diff = calculateKYratioDifference(np.vstack((this_type.W_history for this_type in type_list)),np.tile(weights/float(N),N),total_output,target)
    #print('Tried beta=' + str(beta) + ', nabla=' + str(nabla) + ', got diff=' + str(my_diff))
    return my_diff
Exemple #7
0
def simulateKYratioDifference(DiscFac, nabla, N, type_list, weights,
                              total_output, target):
    '''
    Assigns a uniform distribution over DiscFac with width 2*nabla and N points, then
    solves and simulates all agent types in type_list and compares the simuated
    K/Y ratio to the target K/Y ratio.
    
    Parameters
    ----------
    DiscFac : float
        Center of the uniform distribution of discount factors.
    nabla : float
        Width of the uniform distribution of discount factors.
    N : int
        Number of discrete consumer types.
    type_list : [cstwMPCagent]
        List of agent types to solve and simulate after assigning discount factors.
    weights : np.array
        Age-conditional array of population weights.
    total_output : float
        Total output of the economy, denominator for the K/Y calculation.
    target : float
        Target level of capital-to-output ratio.
        
    Returns
    -------
    my_diff : float
        Difference between simulated and target capital-to-output ratios.
    '''
    if type(DiscFac) in (list, np.ndarray, np.array):
        DiscFac = DiscFac[0]
    DiscFac_list = approxUniform(N, DiscFac - nabla, DiscFac +
                                 nabla)[1]  # only take values, not probs
    assignBetaDistribution(type_list, DiscFac_list)
    multiThreadCommandsFake(type_list, beta_point_commands)
    my_diff = calculateKYratioDifference(
        np.vstack((this_type.W_history for this_type in type_list)),
        np.tile(weights / float(N), N), total_output, target)
    return my_diff
Exemple #8
0
def simulateKYratioDifference(DiscFac,nabla,N,type_list,weights,total_output,target):
    '''
    Assigns a uniform distribution over DiscFac with width 2*nabla and N points, then
    solves and simulates all agent types in type_list and compares the simuated
    K/Y ratio to the target K/Y ratio.
    
    Parameters
    ----------
    DiscFac : float
        Center of the uniform distribution of discount factors.
    nabla : float
        Width of the uniform distribution of discount factors.
    N : int
        Number of discrete consumer types.
    type_list : [cstwMPCagent]
        List of agent types to solve and simulate after assigning discount factors.
    weights : np.array
        Age-conditional array of population weights.
    total_output : float
        Total output of the economy, denominator for the K/Y calculation.
    target : float
        Target level of capital-to-output ratio.
        
    Returns
    -------
    my_diff : float
        Difference between simulated and target capital-to-output ratios.
    '''
    if type(DiscFac) in (list,np.ndarray,np.array):
        DiscFac = DiscFac[0]
    DiscFac_list = approxUniform(N,DiscFac-nabla,DiscFac+nabla)[1] # only take values, not probs
    assignBetaDistribution(type_list,DiscFac_list)
    multiThreadCommandsFake(type_list,beta_point_commands)
    my_diff = calculateKYratioDifference(np.vstack((this_type.W_history for this_type in type_list)),
                                         np.tile(weights/float(N),N),total_output,target)
    return my_diff
Exemple #9
0
def makeValidationFigures(params, use_cohorts):
    '''
    Make several figures that compare simulated outcomes from the estimated model
    to their data counterparts, for external validation.
    
    Parameters
    ----------
    params : np.array
        Size 33 array of model parameters, like that used for estimation.
    use_cohorts : bool
        Indicator for whether or not to model differences across cohorts.
        
    Returns
    -------
    None
    '''
    # Make, solve, and simulate the types
    param_dict = convertVecToDict(params)
    if use_cohorts:
        type_list = makeMultiTypeWithCohorts(param_dict)
    else:
        type_list = makeMultiTypeSimple(param_dict)
    for this_type in type_list:
        this_type.track_vars.append('MedLvlNow')
        this_type.track_vars.append('iLvlNow')
        this_type.track_vars.append('HitCfloor')
        this_type.CalcExpectationFuncs = True
        this_type.DeleteSolution = False
    multiThreadCommandsFake(type_list, ['estimationAction()'], num_jobs=5)

    # Combine simulated data across all types
    aLvlHist = np.concatenate(
        [this_type.aLvlNow_hist for this_type in type_list], axis=1)
    hLvlHist = np.concatenate(
        [this_type.hLvlNow_hist for this_type in type_list], axis=1)
    OOPhist = np.concatenate(
        [this_type.OOPmedNow_hist for this_type in type_list], axis=1)
    MortHist = np.concatenate(
        [this_type.DiePrbNow_hist for this_type in type_list], axis=1)
    WeightHist = np.concatenate(
        [this_type.CumLivPrb_hist for this_type in type_list], axis=1)
    MedHist = np.concatenate(
        [this_type.MedLvlNow_hist for this_type in type_list], axis=1)

    # Combine data labels across types
    HealthTert = np.concatenate(
        [this_type.HealthTert for this_type in type_list])
    HealthQuint = np.concatenate(
        [this_type.HealthQuint for this_type in type_list])
    WealthQuint = np.concatenate(
        [this_type.WealthQuint for this_type in type_list])
    IncQuint = np.concatenate(
        [this_type.IncQuintLong for this_type in type_list])
    Sex = np.concatenate([this_type.SexLong for this_type in type_list])

    # Combine in-data-span masking array across all types
    Active = hLvlHist > 0.
    InDataSpan = np.concatenate(
        [this_type.InDataSpanArray for this_type in type_list], axis=1)
    WeightAdj = InDataSpan * WeightHist

    # For each type, calculate the probability that no health investment is purchased at each age
    # and the probability the
    iLvlZeroRate = np.zeros((10, 25))
    HitCfloorRate = np.zeros((10, 25))
    for j in range(10):
        this_type = type_list[j]
        iLvlZero = this_type.iLvlNow_hist == 0.
        HitCfloor = this_type.HitCfloor_hist == 1.
        iLvlZeroSum = np.sum(iLvlZero * this_type.CumLivPrb_hist, axis=1)
        HitCfloorSum = np.sum(HitCfloor * this_type.CumLivPrb_hist, axis=1)
        PopSum = np.sum(this_type.CumLivPrb_hist, axis=1)
        iLvlZeroRate[j, :] = iLvlZeroSum / PopSum
        HitCfloorRate[j, :] = HitCfloorSum / PopSum

    # Calculate median (pseudo) bank balances for each type
    bLvl_init_median = np.zeros(10)
    for n in range(10):
        bLvl_init_median[n] = np.median(
            type_list[n].aLvlInit) + type_list[n].IncomeNow[2]

    # Extract deciles of health by age from the simulated data
    pctiles = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
    SimHealthPctiles = np.zeros((15, len(pctiles)))
    for t in range(15):
        SimHealthPctiles[t, :] = getPercentiles(hLvlHist[t, :],
                                                weights=WeightAdj[t, :],
                                                percentiles=pctiles)

    # Plot the probability of purchasing zero health investment by age, sex, and income
    colors = ['b', 'r', 'g', 'c', 'm']
    AgeVec = np.linspace(67., 95., num=15)
    for n in range(5):
        plt.plot(AgeVec, iLvlZeroRate[n, :15], '-' + colors[n])
    plt.xlabel('Age')
    plt.ylabel(r'Prob[$n_{it}=0$]')
    plt.title('Probability of Buying No Health Investment, Women')
    plt.legend([
        'Bottom quintile', 'Second quintile', 'Third quintile',
        'Fourth quintile', 'Top quintile'
    ])
    plt.savefig('../Figures/ZeroInvstWomen.pdf')
    plt.show()
    for n in range(5):
        plt.plot(AgeVec, iLvlZeroRate[n + 5, :15], '-' + colors[n])
    plt.xlabel('Age')
    plt.ylabel(r'Prob[$n_{it}=0$]')
    plt.title('Probability of Buying No Health Investment, Men')
    plt.savefig('../Figures/ZeroInvstMen.pdf')
    plt.show()

    # Plot the probability of hitting the consumption floor by age, sex, and income
    colors = ['b', 'r', 'g', 'c', 'm']
    AgeVec = np.linspace(67., 95., num=15)
    for n in range(5):
        plt.plot(AgeVec, HitCfloorRate[n, :15], '-' + colors[n])
    plt.xlabel('Age')
    plt.ylabel(r'Prob[$c_{it}={c}$]')
    plt.title('Probability of Using Consumption Floor, Women')
    plt.legend([
        'Bottom quintile', 'Second quintile', 'Third quintile',
        'Fourth quintile', 'Top quintile'
    ])
    plt.savefig('../Figures/cFloorWomen.pdf')
    plt.show()
    for n in range(5):
        plt.plot(AgeVec, HitCfloorRate[n + 5, :15], '-' + colors[n])
    plt.xlabel('Age')
    plt.ylabel(r'Prob[$c_{it}={c}$]')
    plt.title('Probability of Using Consumption Floor, Men')
    plt.savefig('../Figures/cFloorMen.pdf')
    plt.show()

    # Plot health investment as a function of market resources by type, holding h and Dev fixed
    B = np.linspace(1., 50., 201)
    some_ones = np.ones_like(B)
    hLvl = 0.6
    Dev = 0.0
    t = 0
    Age = str(65 + 2 * t)
    for i in range(5):
        this_type = type_list[i]
        MedShk = np.exp(this_type.MedShkMeanFunc[t](hLvl) +
                        Dev * this_type.MedShkStdFunc(hLvl))
        I = np.maximum(
            this_type.solution[t].PolicyFunc.iFunc(B, hLvl * some_ones,
                                                   MedShk * some_ones), 0.0)
        plt.plot(B, I, '-' + colors[i])
    plt.xlabel(r'Bank balances $b_{it}$, \$10,000 (y2000)')
    plt.ylabel(r'Health investment $n_{it}$, \$10,000 (y2000)')
    plt.xlim([1., 50.])
    plt.ylim([-0.01, 0.65])
    #plt.legend(['Bottom quintile','Second quintile','Third quintile','Fourth quintile','Top quintile'])
    plt.title('Health Investment Function at Age ' + Age + ' by Income, Women')
    plt.savefig('../Figures/iFuncWomen.pdf')
    plt.show()
    for i in range(5):
        this_type = type_list[i + 5]
        MedShk = np.exp(this_type.MedShkMeanFunc[t](hLvl) +
                        Dev * this_type.MedShkStdFunc(hLvl))
        I = np.maximum(
            this_type.solution[t].PolicyFunc.iFunc(B, hLvl * some_ones,
                                                   MedShk * some_ones), 0.0)
        plt.plot(B, I, '-' + colors[i])
    plt.xlabel(r'Bank balances $b_{it}$, \$10,000 (y2000)')
    plt.ylabel(r'Health investment $n_{it}$, \$10,000 (y2000)')
    plt.xlim([1., 50.])
    plt.ylim([-0.01, 0.65])
    plt.legend([
        'Bottom quintile', 'Second quintile', 'Third quintile',
        'Fourth quintile', 'Top quintile'
    ],
               loc=4)
    plt.title('Health Investment Function at Age ' + Age + ' by Income, Men')
    plt.savefig('../Figures/iFuncMen.pdf')
    plt.show()

    # Plot PDV of total medical expenses by health at median wealth at age 69-70 by income quintile and sex
    t = 2
    H = np.linspace(0.0, 1.0, 201)
    for n in range(5):
        B = bLvl_init_median[n] * np.ones_like(H)
        M = type_list[n].solution[t].TotalMedPDVfunc(B, H)
        plt.plot(H, M, color=colors[n])
    plt.xlim([0., 1.])
    plt.ylim([0., 17])
    plt.xlabel(r'Health capital $h_{it}$')
    plt.ylabel('PDV total medical care, $10,000 (y2000)')
    plt.legend([
        'Bottom quintile', 'Second quintile', 'Third quintile',
        'Fourth quintile', 'Top quintile'
    ])
    plt.title('Total Medical Expenses by Health and Income, Women')
    plt.savefig('../Figures/TotalMedPDVbyIncomeWomen.pdf')
    plt.show()
    for n in range(5, 10):
        B = bLvl_init_median[n] * np.ones_like(H)
        M = type_list[n].solution[t].TotalMedPDVfunc(B, H)
        plt.plot(H, M, color=colors[n - 5])
    plt.xlim([0., 1.])
    plt.ylim([0., 17])
    plt.xlabel(r'Health capital $h_{it}$')
    plt.ylabel('PDV total medical care, $10,000 (y2000)')
    #plt.legend(['Bottom quintile','Second quintile','Third quintile','Fourth quintile','Top quintile'])
    plt.title('Total Medical Expenses by Health and Income, Men')
    plt.savefig('../Figures/TotalMedPDVbyIncomeMen.pdf')
    plt.show()

    # Plot PDV of OOP medical expenses by health at median wealth at age 69-70 by income quintile and sex
    colors = ['b', 'r', 'g', 'c', 'm']
    t = 2
    H = np.linspace(0.0, 1.0, 201)
    for n in range(5):
        B = bLvl_init_median[n] * np.ones_like(H)
        M = type_list[n].solution[t].OOPmedPDVfunc(B, H)
        plt.plot(H, M, color=colors[n])
    plt.xlim([0., 1.])
    plt.ylim([0., 3.5])
    plt.xlabel(r'Health capital $h_{it}$')
    plt.ylabel('PDV OOP medical expenses, $10,000 (y2000)')
    #plt.legend(['Bottom quintile','Second quintile','Third quintile','Fourth quintile','Top quintile'])
    plt.title('OOP Medical Expenses by Health and Income, Women')
    plt.savefig('../Figures/OOPmedPDVbyIncomeWomen.pdf')
    plt.show()
    for n in range(5, 10):
        B = bLvl_init_median[n] * np.ones_like(H)
        M = type_list[n].solution[t].OOPmedPDVfunc(B, H)
        plt.plot(H, M, color=colors[n - 5])
    plt.xlim([0., 1.])
    plt.ylim([0., 3.5])
    plt.xlabel(r'Health capital $h_{it}$')
    plt.ylabel('PDV total medical care, $10,000 (y2000)')
    #plt.legend(['Bottom quintile','Second quintile','Third quintile','Fourth quintile','Top quintile'])
    plt.title('OOP Medical Expenses by Health and Income, Men')
    plt.savefig('../Figures/OOPmedPDVbyIncomeMen.pdf')
    plt.show()

    # Plot life expectancy by health at median wealth at age 69-70 by income quintile and sex
    colors = ['b', 'r', 'g', 'c', 'm']
    t = 2
    H = np.linspace(0.0, 1.0, 201)
    for n in range(5):
        B = bLvl_init_median[n] * np.ones_like(H)
        M = type_list[n].solution[t].ExpectedLifeFunc(B, H)
        plt.plot(H, M, color=colors[n])
    plt.xlim([0., 1.])
    plt.ylim([0., 20.])
    plt.xlabel(r'Health capital $h_{it}$')
    plt.ylabel('Remaining years of life expectancy')
    plt.legend([
        'Bottom quintile', 'Second quintile', 'Third quintile',
        'Fourth quintile', 'Top quintile'
    ])
    plt.title('Life Expectancy at Age 69 by Health and Income, Women')
    plt.savefig('../Figures/LifeExpectancybyIncomeWomen.pdf')
    plt.show()
    for n in range(5, 10):
        B = bLvl_init_median[n] * np.ones_like(H)
        M = type_list[n].solution[t].ExpectedLifeFunc(B, H)
        plt.plot(H, M, color=colors[n - 5])
    plt.xlim([0., 1.])
    plt.ylim([0., 20.])
    plt.xlabel(r'Health capital $h_{it}$')
    plt.ylabel('Remaining years of life expectancy')
    plt.legend([
        'Bottom quintile', 'Second quintile', 'Third quintile',
        'Fourth quintile', 'Top quintile'
    ])
    plt.title('Life Expectancy at Age 69 by Health and Income, Men')
    plt.savefig('../Figures/LifeExpectancybyIncomeMen.pdf')
    plt.show()

    # Extract deciles of health from the HRS data
    DataHealthPctiles = np.zeros((15, len(pctiles)))
    for t in range(15):
        these = np.logical_and(Data.AgeBoolArray[:, :, t], Data.Alive)
        h_temp = Data.h_data[these]
        DataHealthPctiles[t, :] = getPercentiles(h_temp, percentiles=pctiles)

    # Plot deciles of health by by age
    plt.plot(AgeVec, SimHealthPctiles, '-k')
    plt.plot(AgeVec, DataHealthPctiles, '--k')
    plt.ylim(0., 1.)
    plt.ylabel('Health capital $h_{it}$')
    plt.xlabel('Age')
    plt.title('Simulated vs Actual Distribution of Health by Age')
    plt.savefig('../Figures/HealthDistribution.pdf')
    plt.show()

    OOPmodFunc = lambda x: np.log(10000 * x)

    # Extract many percentiles of OOP spending from the simulated data
    OOP_sim = OOPhist.flatten()
    Weight_temp = WeightAdj.flatten()
    CDFvalsSim = np.linspace(0.0001, 0.999, 1000)
    OOPsimCDF_A0 = getPercentiles(OOP_sim * 10000,
                                  weights=Weight_temp,
                                  percentiles=CDFvalsSim)
    OOPsimCDF_B0 = getPercentiles(OOPmodFunc(OOP_sim),
                                  weights=Weight_temp,
                                  percentiles=CDFvalsSim)

    # Extract some percentiles of OOP spending from the HRS data
    these = np.logical_and(Data.Alive, np.logical_not(np.isnan(Data.m_data)))
    OOP_data = Data.m_data[these]
    CDFvalsData = np.linspace(0.0001, 0.999, 500)
    OOPdataCDF_A0 = getPercentiles(OOP_data * 10000,
                                   weights=None,
                                   percentiles=CDFvalsData)
    OOPdataCDF_B0 = getPercentiles(OOPmodFunc(OOP_data),
                                   weights=None,
                                   percentiles=CDFvalsData)

    # Plot the CDF of log out-of-pocket medical spending
    plt.subplot(211)
    plt.title('CDF of OOP Medical Spending')
    plt.plot(OOPdataCDF_B0, CDFvalsData, '-r')
    plt.plot(OOPsimCDF_B0, CDFvalsSim, '-b')
    plt.xlim(8., 11.5)
    plt.ylim(0.85, 1.0)
    plt.xticks([
        np.log(3000),
        np.log(6000),
        np.log(12000),
        np.log(24000),
        np.log(48000),
        np.log(96000)
    ], ['3000', '6000', '12000', '24000', '48000', '96000'])

    # Plot the CDF of out-of-pocket medical spending
    plt.subplot(212)
    plt.plot(OOPdataCDF_A0, CDFvalsData, '-r')
    plt.plot(OOPsimCDF_A0, CDFvalsSim, '-b')
    plt.xlim(0., 3000.)
    plt.ylim(0.0, 0.9)
    plt.xlabel('Out-of-pocket medical expenses, biannual')
    plt.ylabel('Cumulative distribution')
    plt.legend(['HRS data', 'Model'], loc=4)
    plt.savefig('../Figures/OOPdistribution.pdf')
    plt.show()

    # Calculate the serial correlation of log OOP medical spending in simulated data
    Med_sim = np.log(10000 * OOPhist + 1.)
    serial_corr_sim = np.zeros(15)
    serial_corr_sim_inc = np.zeros((15, 5))
    for t in range(15):
        these = np.logical_and(WeightAdj[t + 1, :] > 0., WeightAdj[t + 1, :] <
                               1.)  # Alive but not the first simulated period
        Med_t = Med_sim[t + 1, these]
        Med_tm1 = Med_sim[t, these]
        weight_reg = WeightAdj[t + 1, these]
        const_reg = np.ones_like(Med_t)
        regressors = np.transpose(np.vstack([const_reg, Med_tm1]))
        temp_model = WLS(Med_t, regressors, weights=weight_reg)
        temp_results = temp_model.fit()
        serial_corr_sim[t] = temp_results.rsquared
        for i in range(5):
            those = np.logical_and(these, IncQuint == i + 1)
            Med_t = Med_sim[t + 1, those]
            Med_tm1 = Med_sim[t, those]
            weight_reg = WeightAdj[t + 1, those]
            const_reg = np.ones_like(Med_t)
            regressors = np.transpose(np.vstack([const_reg, Med_tm1]))
            temp_model = WLS(Med_t, regressors, weights=weight_reg)
            temp_results = temp_model.fit()
            serial_corr_sim_inc[t, i] = temp_results.rsquared

    # Calculate the serial correlation of log OOP medical spending in HRS data
    DataExists = np.logical_and(np.logical_not(np.isnan(Data.m_data[:-1, :])),
                                np.logical_not(np.isnan(Data.m_data[1:, :])))
    BothAlive = np.logical_and(Data.Alive[:-1, :], Data.Alive[1:, :])
    Usable = np.logical_and(DataExists, BothAlive)
    serial_corr_data = np.zeros(15)
    serial_corr_data_inc = np.zeros((15, 5))
    Med_data = np.log(10000 * Data.m_data + 1.)
    for t in range(15):
        these = np.logical_and(Usable, Data.AgeBoolArray[:-1, :, t])
        Med_t = Med_data[1:, :][these]
        Med_tm1 = Med_data[:-1, :][these]
        const_reg = np.ones_like(Med_t)
        regressors = np.transpose(np.vstack([const_reg, Med_tm1]))
        temp_model = OLS(Med_t, regressors)
        temp_results = temp_model.fit()
        serial_corr_data[t] = temp_results.rsquared
        for i in range(5):
            those = np.logical_and(these, Data.IncQuintBoolArray[:-1, :, i])
            Med_t = Med_data[1:, :][those]
            Med_tm1 = Med_data[:-1, :][those]
            const_reg = np.ones_like(Med_t)
            regressors = np.transpose(np.vstack([const_reg, Med_tm1]))
            temp_model = OLS(Med_t, regressors)
            temp_results = temp_model.fit()
            serial_corr_data_inc[t, i] = temp_results.rsquared

    # Make a plot of serial correlation of OOP medical expenses
    plt.subplot(3, 2, 1)
    plt.plot(AgeVec, serial_corr_data, '-r')
    plt.plot(AgeVec, serial_corr_sim, '-b')
    plt.ylim(0, 0.5)
    plt.xticks([])
    plt.text(75, 0.4, 'All individuals')

    plt.subplot(3, 2, 2)
    plt.plot(AgeVec, serial_corr_data_inc[:, 0], '-r')
    plt.plot(AgeVec, serial_corr_sim_inc[:, 0], '-b')
    plt.ylim(0, 0.5)
    plt.xticks([])
    plt.yticks([])
    plt.text(70, 0.4, 'Bottom income quintile')

    plt.subplot(3, 2, 3)
    plt.plot(AgeVec, serial_corr_data_inc[:, 1], '-r')
    plt.plot(AgeVec, serial_corr_sim_inc[:, 1], '-b')
    plt.ylim(0, 0.5)
    plt.xticks([])
    plt.text(67, 0.4, 'Second income quintile')
    plt.ylabel('$R^2$ of regression of $\log(OOP_{t})$ on $\log(OOP_{t-1})$')

    plt.subplot(3, 2, 4)
    plt.plot(AgeVec, serial_corr_data_inc[:, 2], '-r')
    plt.plot(AgeVec, serial_corr_sim_inc[:, 2], '-b')
    plt.ylim(0, 0.5)
    plt.xticks([])
    plt.yticks([])
    plt.text(70, 0.4, 'Third income quintile')

    plt.subplot(3, 2, 5)
    plt.plot(AgeVec, serial_corr_data_inc[:, 3], '-r')
    plt.plot(AgeVec, serial_corr_sim_inc[:, 3], '-b')
    plt.ylim(0, 0.5)
    plt.xlabel('Age')
    plt.text(70, 0.4, 'Fourth income quintile')

    plt.subplot(3, 2, 6)
    plt.plot(AgeVec, serial_corr_data_inc[:, 4], '-r')
    plt.plot(AgeVec, serial_corr_sim_inc[:, 4], '-b')
    plt.ylim(0, 0.5)
    plt.xlabel('Age')
    plt.yticks([])
    plt.text(70, 0.4, 'Top income quintile')
    plt.savefig('../Figures/SerialCorrOOP.pdf')
    plt.show()

    # Make a plot of serial correlation of OOP medical expenses
    plt.plot(AgeVec + 2, serial_corr_data, '-r')
    plt.plot(AgeVec + 2, serial_corr_sim, '-b')
    plt.xlabel('Age')
    plt.ylabel('$R^2$ of regression of $\log(OOP_{t})$ on $\log(OOP_{t-1})$')
    plt.legend(['HRS data', 'Model'], loc=1)
    plt.show()

    # Calculate mortality probability by age and income quintile in simulated data
    MortByIncAge_data = Data.MortByIncAge
    MortByIncAge_sim = np.zeros((5, 15))
    MortByAge_sim = np.zeros(15)
    for t in range(15):
        THESE = np.logical_and(Active[t, :], InDataSpan[t, :])
        Weight = WeightHist[t + 1, THESE]
        WeightSum = np.sum(Weight)
        Mort = MortHist[t + 1, THESE]
        MortByAge_sim[t] = np.dot(Mort, Weight) / WeightSum
        for i in range(5):
            right_inc = IncQuint == i + 1
            these = np.logical_and(THESE, right_inc)
            Mort = MortHist[t + 1, these]
            Weight = WeightHist[t + 1, these]
            WeightSum = np.sum(Weight)
            MortByIncAge_sim[i, t] = np.dot(Mort, Weight) / WeightSum

    # Plot mortality probability by age and income quintile
    income_colors = ['b', 'r', 'g', 'm', 'c']
    for i in range(5):
        plt.plot(AgeVec, MortByIncAge_sim[i, :] - MortByAge_sim,
                 '-' + income_colors[i])
    for i in range(5):
        plt.plot(AgeVec, MortByIncAge_data[i, :] - MortByAge_sim,
                 '.' + income_colors[i])
    plt.xlabel('Age')
    plt.ylabel('Relative death probability (biannual)')
    plt.title('Death Probability by Income Quintile')
    plt.legend([
        'Bottom quintile', 'Second quintile', 'Third quintile',
        'Fourth quintile', 'Top quintile'
    ],
               loc=2)
    plt.savefig('../Figures/MortByIncAge.pdf')
    plt.show()

    # Plot the 99% confidence band of the health production function
    mean = np.array([-2.13369276099, 1.71842956397])
    covar = np.array([[0.02248322, 0.01628292], [0.01628308, 0.01564192]])
    dstn = multivariate_normal(mean, covar)
    N = 10000
    M = 201
    draws = dstn.rvs(10000)
    MedVec = np.linspace(0., 1.5, M)
    func_data = np.zeros((N, M))

    def makeHealthProdFunc(LogSlope, LogCurve):
        LogJerk = 15.6
        tempw = np.exp(LogJerk)
        HealthProd0 = 1. - tempw
        tempx = np.exp(
            LogSlope)  # Slope of health production function at iLvl=0
        HealthProd2 = np.exp(LogJerk - LogCurve)
        HealthProdFunc = lambda i: tempx / HealthProd0 * (
            (i * HealthProd2**(
                (1. - HealthProd0) / HealthProd0) + HealthProd2**
             (1. / HealthProd0))**HealthProd0 - HealthProd2)
        return HealthProdFunc

    for n in range(N):
        f = makeHealthProdFunc(draws[n, 0], draws[n, 1])
        func_data[n, :] = f(MedVec)

    f = makeHealthProdFunc(Params.test_param_vec[25],
                           Params.test_param_vec[26])
    CI_array = np.zeros((M, 2))
    for m in range(M):
        CI_array[m, :] = getPercentiles(func_data[:, m],
                                        percentiles=[0.025, 0.975])
    health_prod = f(MedVec)

    plt.plot(MedVec, health_prod, '-r')
    plt.plot(MedVec, CI_array[:, 0], '--k', linewidth=0.5)
    plt.plot(MedVec, CI_array[:, 1], '--k', linewidth=0.5)
    plt.xlim([-0.005, 1.5])
    plt.ylim([0., None])
    plt.xlabel('Health investment $n_{it}$, \$10,000 (y2000)')
    plt.ylabel('Health produced ')
    plt.title('Estimated Health Production Function')
    plt.legend([
        'Estimated health production function',
        'Pointwise 95% confidence bounds'
    ],
               loc=4)
    plt.savefig('../Figures/HealthProdFunc.pdf')
    plt.show()
Exemple #10
0
    BasicType.vFuncBool = False  # just in case it was set to True above
    my_agent_list = []
    CRRA_list = np.linspace(
        1, 8, type_count)  # All the values that CRRA will take on
    for i in range(type_count):
        this_agent = deepcopy(BasicType)  # Make a new copy of the basic type
        this_agent.assignParameters(
            CRRA=CRRA_list[i])  # Give it a unique CRRA value
        my_agent_list.append(this_agent)  # Addd it to the list of agent types

    # Make a list of commands to be run in parallel; these should be methods of ConsumerType
    do_this_stuff = ['updateSolutionTerminal()', 'solve()', 'unpack_cFunc()']

    # Solve the model for each type by looping over the types (not multithreading)
    start_time = clock()
    multiThreadCommandsFake(my_agent_list,
                            do_this_stuff)  # Fake multithreading, just loops
    end_time = clock()
    print('Solving ' + str(type_count) +
          ' types without multithreading took ' +
          mystr(end_time - start_time) + ' seconds.')

    # Plot the consumption functions for all types on one figure
    plotFuncs([this_type.cFunc[0] for this_type in my_agent_list], 0, 5)

    # Delete the solution for each type to make sure we're not just faking it
    for i in range(type_count):
        my_agent_list[i].solution = None
        my_agent_list[i].cFunc = None
        my_agent_list[i].time_vary.remove('solution')
        my_agent_list[i].time_vary.remove('cFunc')
Exemple #11
0
 
 # Make many copies of the basic type, each with a different risk aversion
 BasicType.vFuncBool = False # just in case it was set to True above
 my_agent_list = []
 CRRA_list = np.linspace(1,8,type_count) # All the values that CRRA will take on
 for i in range(type_count):
     this_agent = deepcopy(BasicType)   # Make a new copy of the basic type
     this_agent.assignParameters(CRRA = CRRA_list[i]) # Give it a unique CRRA value
     my_agent_list.append(this_agent)   # Addd it to the list of agent types
     
 # Make a list of commands to be run in parallel; these should be methods of ConsumerType
 do_this_stuff = ['updateSolutionTerminal()','solve()','unpackcFunc()']
 
 # Solve the model for each type by looping over the types (not multithreading)
 start_time = clock()
 multiThreadCommandsFake(my_agent_list, do_this_stuff) # Fake multithreading, just loops
 end_time = clock()
 print('Solving ' + str(type_count) +  ' types without multithreading took ' + mystr(end_time-start_time) + ' seconds.')
 
 # Plot the consumption functions for all types on one figure
 plotFuncs([this_type.cFunc[0] for this_type in my_agent_list],0,5)
 
 # Delete the solution for each type to make sure we're not just faking it
 for i in range(type_count):
     my_agent_list[i].solution = None
     my_agent_list[i].cFunc = None
     my_agent_list[i].time_vary.remove('solution')
     my_agent_list[i].time_vary.remove('cFunc')
 
 # And here's HARK's initial attempt at multithreading:
 start_time = clock()
Exemple #12
0
     plotFunc(BasicType.solution[0].vFunc,0.2,5)
 
 # Make copies of the basic type, each with a different risk aversion
 BasicType.calc_vFunc = False
 my_agent_list = []
 #rho_list = np.random.permutation(np.linspace(1,8,type_count))
 rho_list = np.linspace(1,8,type_count)
 for i in range(type_count):
     this_agent = deepcopy(BasicType)
     this_agent.assignParameters(rho = rho_list[i])
     my_agent_list.append(this_agent)
 do_this_stuff = ['updateSolutionTerminal()','solve()','unpack_cFunc()']
 
 # Solve the model for each type by looping over the types (not multithreading)
 start_time = time()
 multiThreadCommandsFake(my_agent_list, do_this_stuff)
 end_time = time()
 print('Solving ' + str(type_count) +  ' types without multithreading took ' + mystr(end_time-start_time) + ' seconds.')
 
 # Plot the consumption functions for all types on one figure
 plotFuncs([this_type.cFunc[0] for this_type in my_agent_list],0,5)
 
 # Delete the solution for each type to make sure we're not just faking it
 for i in range(type_count):
     my_agent_list[i].solution = None
     my_agent_list[i].cFunc = None
 
 # And here's my shitty, shitty attempt at multithreading:
 start_time = time()
 multiThreadCommands(my_agent_list, do_this_stuff)
 end_time = time()
Exemple #13
0
def makeCSTWresults(beta,nabla,save_name=None):
    '''
    Produces a variety of results for the cstwMPC paper (usually after estimating).
    '''
    beta_list = makeUniformDiscreteDistribution(beta,nabla,N=Params.pref_type_count)
    assignBetaDistribution(est_type_list,beta_list)
    multiThreadCommandsFake(est_type_list,results_commands)
    
    lorenz_distance = np.sqrt(betaDistObjective(nabla))
    #lorenz_distance = 0.0
    
    if Params.do_lifecycle: # This can probably be removed
        sim_length = Params.total_T
    else:
        sim_length = Params.sim_periods
    sim_wealth = (np.vstack((this_type.W_history for this_type in est_type_list))).flatten()
    sim_wealth_short = (np.vstack((this_type.W_history[0:sim_length] for this_type in est_type_list))).flatten()
    sim_kappa = (np.vstack((this_type.kappa_history for this_type in est_type_list))).flatten()
    sim_income = (np.vstack((this_type.Y_history[0:sim_length]*np.asarray(this_type.temp_shocks[0:sim_length]) for this_type in est_type_list))).flatten()
    sim_ratio = (np.vstack((this_type.W_history[0:sim_length]/this_type.Y_history[0:sim_length] for this_type in est_type_list))).flatten()
    if Params.do_lifecycle:
        sim_unemp = (np.vstack((np.vstack((this_type.income_unemploy == np.asarray(this_type.temp_shocks[0:Params.working_T]),np.zeros((Params.retired_T,Params.sim_pop_size),dtype=bool))) for this_type in est_type_list))).flatten()
        sim_emp = (np.vstack((np.vstack((this_type.income_unemploy != np.asarray(this_type.temp_shocks[0:Params.working_T]),np.zeros((Params.retired_T,Params.sim_pop_size),dtype=bool))) for this_type in est_type_list))).flatten()
        sim_ret = (np.vstack((np.vstack((np.zeros((Params.working_T,Params.sim_pop_size),dtype=bool),np.ones((Params.retired_T,Params.sim_pop_size),dtype=bool))) for this_type in est_type_list))).flatten()
    else:
        sim_unemp = np.vstack((this_type.income_unemploy == np.asarray(this_type.temp_shocks[0:sim_length]) for this_type in est_type_list)).flatten()
        sim_emp = np.vstack((this_type.income_unemploy != np.asarray(this_type.temp_shocks[0:sim_length]) for this_type in est_type_list)).flatten()
        sim_ret = np.zeros(sim_emp.size,dtype=bool)
    sim_weight_all = np.tile(np.repeat(Params.age_weight_all,Params.sim_pop_size),Params.pref_type_count)
    sim_weight_short = np.tile(np.repeat(Params.age_weight_short,Params.sim_pop_size),Params.pref_type_count)
    
    if Params.do_beta_dist and Params.do_lifecycle:
        kappa_mean_by_age_type = (np.mean(np.vstack((this_type.kappa_history for this_type in est_type_list)),axis=1)).reshape((Params.pref_type_count*3,DropoutType.T_total))
        kappa_mean_by_age_pref = np.zeros((Params.pref_type_count,DropoutType.T_total)) + np.nan
        for j in range(Params.pref_type_count):
            kappa_mean_by_age_pref[j,] = Params.d_pct*kappa_mean_by_age_type[3*j+0,] + Params.h_pct*kappa_mean_by_age_type[3*j+1,] + Params.c_pct*kappa_mean_by_age_type[3*j+2,] 
        kappa_mean_by_age = np.mean(kappa_mean_by_age_pref,axis=0)
        kappa_lo_beta_by_age = kappa_mean_by_age_pref[0,]
        kappa_hi_beta_by_age = kappa_mean_by_age_pref[Params.pref_type_count-1,]
    
    lorenz_fig_data = makeLorenzFig(Params.SCF_wealth,Params.SCF_weights,sim_wealth,sim_weight_all)
    mpc_fig_data = makeMPCfig(sim_kappa,sim_weight_short)
    
    kappa_all = weightedAverageSimData(np.vstack((this_type.kappa_history for this_type in est_type_list)),np.tile(Params.age_weight_short/float(Params.pref_type_count),Params.pref_type_count))
    kappa_unemp = np.sum(sim_kappa[sim_unemp]*sim_weight_short[sim_unemp])/np.sum(sim_weight_short[sim_unemp])
    kappa_emp = np.sum(sim_kappa[sim_emp]*sim_weight_short[sim_emp])/np.sum(sim_weight_short[sim_emp])
    kappa_ret = np.sum(sim_kappa[sim_ret]*sim_weight_short[sim_ret])/np.sum(sim_weight_short[sim_ret])
    
    my_cutoffs = [(0.99,1),(0.9,1),(0.8,1),(0.6,0.8),(0.4,0.6),(0.2,0.4),(0.0,0.2)]
    kappa_by_ratio_groups = avgDataSlice(sim_kappa,sim_ratio,my_cutoffs,sim_weight_short)
    kappa_by_income_groups = avgDataSlice(sim_kappa,sim_income,my_cutoffs,sim_weight_short)
    
    quintile_points = extractPercentiles(sim_wealth_short,weights=sim_weight_short,percentiles=[0.2, 0.4, 0.6, 0.8])
    wealth_quintiles = np.ones(sim_wealth_short.size,dtype=int)
    wealth_quintiles[sim_wealth_short > quintile_points[0]] = 2
    wealth_quintiles[sim_wealth_short > quintile_points[1]] = 3
    wealth_quintiles[sim_wealth_short > quintile_points[2]] = 4
    wealth_quintiles[sim_wealth_short > quintile_points[3]] = 5
    MPC_cutoff = extractPercentiles(sim_kappa,weights=sim_weight_short,percentiles=[2.0/3.0])
    these_quintiles = wealth_quintiles[sim_kappa > MPC_cutoff]
    these_weights = sim_weight_short[sim_kappa > MPC_cutoff]
    hand_to_mouth_total = np.sum(these_weights)
    hand_to_mouth_pct = []
    for q in range(5):
        hand_to_mouth_pct.append(np.sum(these_weights[these_quintiles == (q+1)])/hand_to_mouth_total)
    
    results_string = 'Estimate is beta=' + str(beta) + ', nabla=' + str(nabla) + '\n'
    results_string += 'Lorenz distance is ' + str(lorenz_distance) + '\n'
    results_string += 'Average MPC for all consumers is ' + mystr(kappa_all) + '\n'
    results_string += 'Average MPC in the top percentile of W/Y is ' + mystr(kappa_by_ratio_groups[0]) + '\n'
    results_string += 'Average MPC in the top decile of W/Y is ' + mystr(kappa_by_ratio_groups[1]) + '\n'
    results_string += 'Average MPC in the top quintile of W/Y is ' + mystr(kappa_by_ratio_groups[2]) + '\n'
    results_string += 'Average MPC in the second quintile of W/Y is ' + mystr(kappa_by_ratio_groups[3]) + '\n'
    results_string += 'Average MPC in the middle quintile of W/Y is ' + mystr(kappa_by_ratio_groups[4]) + '\n'
    results_string += 'Average MPC in the fourth quintile of W/Y is ' + mystr(kappa_by_ratio_groups[5]) + '\n'
    results_string += 'Average MPC in the bottom quintile of W/Y is ' + mystr(kappa_by_ratio_groups[6]) + '\n'
    results_string += 'Average MPC in the top percentile of y is ' + mystr(kappa_by_income_groups[0]) + '\n'
    results_string += 'Average MPC in the top decile of y is ' + mystr(kappa_by_income_groups[1]) + '\n'
    results_string += 'Average MPC in the top quintile of y is ' + mystr(kappa_by_income_groups[2]) + '\n'
    results_string += 'Average MPC in the second quintile of y is ' + mystr(kappa_by_income_groups[3]) + '\n'
    results_string += 'Average MPC in the middle quintile of y is ' + mystr(kappa_by_income_groups[4]) + '\n'
    results_string += 'Average MPC in the fourth quintile of y is ' + mystr(kappa_by_income_groups[5]) + '\n'
    results_string += 'Average MPC in the bottom quintile of y is ' + mystr(kappa_by_income_groups[6]) + '\n'
    results_string += 'Average MPC for the employed is ' + mystr(kappa_emp) + '\n'
    results_string += 'Average MPC for the unemployed is ' + mystr(kappa_unemp) + '\n'
    results_string += 'Average MPC for the retired is ' + mystr(kappa_ret) + '\n'
    results_string += 'Of the population with the 1/3 highest MPCs...' + '\n'
    results_string += mystr(hand_to_mouth_pct[0]*100) + '% are in the bottom wealth quintile,' + '\n'
    results_string += mystr(hand_to_mouth_pct[1]*100) + '% are in the second wealth quintile,' + '\n'
    results_string += mystr(hand_to_mouth_pct[2]*100) + '% are in the third wealth quintile,' + '\n'
    results_string += mystr(hand_to_mouth_pct[3]*100) + '% are in the fourth wealth quintile,' + '\n'
    results_string += 'and ' + mystr(hand_to_mouth_pct[4]*100) + '% are in the top wealth quintile.' + '\n'
    print(results_string)
    
    if save_name is not None:
        with open('./Results/' + save_name + 'LorenzFig.txt','w') as f:
            my_writer = csv.writer(f, delimiter='\t',)
            for j in range(len(lorenz_fig_data[0])):
                my_writer.writerow([lorenz_fig_data[0][j], lorenz_fig_data[1][j], lorenz_fig_data[2][j]])
            f.close()
        with open('./Results/' + save_name + 'MPCfig.txt','w') as f:
            my_writer = csv.writer(f, delimiter='\t')
            for j in range(len(mpc_fig_data[0])):
                my_writer.writerow([lorenz_fig_data[0][j], mpc_fig_data[1][j]])
            f.close()
        if Params.do_beta_dist and Params.do_lifecycle:
            with open('./Results/' + save_name + 'KappaByAge.txt','w') as f:
                my_writer = csv.writer(f, delimiter='\t')
                for j in range(len(kappa_mean_by_age)):
                    my_writer.writerow([kappa_mean_by_age[j], kappa_lo_beta_by_age[j], kappa_hi_beta_by_age[j]])
                f.close()
        with open('./Results/' + save_name + 'Results.txt','w') as f:
            f.write(results_string)
            f.close()
Exemple #14
0
        Target level of capital-to-output ratio.
        
    Returns
    -------
    my_diff : float
        Difference between simulated and target capital-to-output ratios.
    '''
    if type(DiscFac) in (list,np.ndarray,np.array):
        DiscFac = DiscFac[0]
<<<<<<< HEAD
    DiscFac_list = approxUniform(DiscFac,nabla,N)
=======
    DiscFac_list = approxUniform(N,DiscFac-nabla,DiscFac+nabla)[1] # only take values, not probs
>>>>>>> eeb37f24755d0c683c9d9efbe5e7447425c98b86
    assignBetaDistribution(type_list,DiscFac_list)
    multiThreadCommandsFake(type_list,beta_point_commands)
    my_diff = calculateKYratioDifference(np.vstack((this_type.W_history for this_type in type_list)),
                                         np.tile(weights/float(N),N),total_output,target)
    return my_diff


mystr = lambda number : "{:.3f}".format(number)
'''
Truncates a float at exactly three decimal places when displaying as a string.
'''

def makeCSTWresults(DiscFac,nabla,save_name=None):
    '''
    Produces a variety of results for the cstwMPC paper (usually after estimating).
    
    Parameters