Exemple #1
0
    def RetrieveData(Date, args):
        """
        This function retrieves CHIRPS data for a given date from the
        ftp://chg-ftpout.geog.ucsb.edu server.
        https://data.chc.ucsb.edu/
        Keyword arguments:
        Date -- 'yyyy-mm-dd'
        args -- A list of parameters defined in the DownloadData function.
        """
        # Argument
        [output_folder, TimeCase, xID, yID, lonlim, latlim] = args

        # open ftp server
        # ftp = FTP("chg-ftpout.geog.ucsb.edu", "", "")
        ftp = FTP("data.chc.ucsb.edu")
        ftp.login()

    	# Define FTP path to directory
        if TimeCase == 'daily':
            pathFTP = 'pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05/%s/' %Date.strftime('%Y')
        elif TimeCase == 'monthly':
            pathFTP = 'pub/org/chg/products/CHIRPS-2.0/global_monthly/tifs/'
        else:
            raise KeyError("The input time interval is not supported")

        # find the document name in this directory
        ftp.cwd(pathFTP)
        listing = []

    	# read all the file names in the directory
        ftp.retrlines("LIST", listing.append)

    	# create all the input name (filename) and output (outfilename, filetif, DiFileEnd) names
        if TimeCase == 'daily':
            filename = 'chirps-v2.0.%s.%02s.%02s.tif.gz' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d'))
            outfilename = os.path.join(output_folder,'chirps-v2.0.%s.%02s.%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d')))
            DirFileEnd = os.path.join(output_folder,'P_CHIRPS.v2.0_mm-day-1_daily_%s.%02s.%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d')))
        elif TimeCase == 'monthly':
            filename = 'chirps-v2.0.%s.%02s.tif.gz' %(Date.strftime('%Y'), Date.strftime('%m'))
            outfilename = os.path.join(output_folder,'chirps-v2.0.%s.%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m')))
            DirFileEnd = os.path.join(output_folder,'P_CHIRPS.v2.0_mm-month-1_monthly_%s.%02s.%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d')))
        else:
            raise KeyError("The input time interval is not supported")

        # download the global rainfall file
        try:
            local_filename = os.path.join(output_folder, filename)
            lf = open(local_filename, "wb")
            ftp.retrbinary("RETR " + filename, lf.write, 8192)
            lf.close()

            # unzip the file
            zip_filename = os.path.join(output_folder, filename)
            Raster.ExtractFromGZ(zip_filename, outfilename, delete=True)

            # open tiff file
            dataset,NoDataValue = Raster.GetRasterData(outfilename)

            # clip dataset to the given extent
            data = dataset[yID[0]:yID[1], xID[0]:xID[1]]
            # replace -ve values with -9999
            data[data < 0] = -9999

            # save dataset as geotiff file
            geo = [lonlim[0], 0.05, 0, latlim[1], 0, -0.05]
            Raster.CreateRaster(Path=DirFileEnd, data=data, geo=geo, EPSG="WGS84",NoDataValue = NoDataValue)

            # delete old tif file
            os.remove(outfilename)

        except:
            print("file not exists")
        return True
Exemple #2
0
    def DownloadData(self, Var, Waitbar):
        """
        This function downloads ECMWF six-hourly, daily or monthly data

        Keyword arguments:

        """

        # Load factors / unit / type of variables / accounts
        VarInfo = Variables(self.Time)
        Varname_dir = VarInfo.file_name[Var]

        # Create Out directory
        out_dir = os.path.join(self.Path, self.Time, Varname_dir)

        if not os.path.exists(out_dir):
              os.makedirs(out_dir)

        DownloadType = VarInfo.DownloadType[Var]


        if DownloadType == 1:
            string1 = 'oper'
            string4 = "0"
            string6 = "00:00:00/06:00:00/12:00:00/18:00:00"
            string2 = 'sfc'
            string8 = 'an'

        if DownloadType == 2:
            string1 = 'oper'
            string4 = "12"
            string6 = "00:00:00/12:00:00"
            string2 = 'sfc'
            string8 = 'fc'

        if DownloadType == 3:
            string1 = 'oper'
            string4 = "0"
            string6 = "00:00:00/06:00:00/12:00:00/18:00:00"
            string2 = 'pl'
            string8 = 'an'

        parameter_number = VarInfo.number_para[Var]

        string3 = '%03d.128' %(parameter_number)
        string5 = '0.125/0.125'
        string9 = 'ei'
        string10 = '%s/%s/%s/%s' %(self.latlim_corr[1], self.lonlim_corr[0],
                                   self.latlim_corr[0], self.lonlim_corr[1])   #N, W, S, E


        # Download data by using the ECMWF API
        print('Use API ECMWF to collect the data, please wait')
        RemoteSensing.API(self.Path, DownloadType, string1, string2, string3, string4,
                          string5, string6, self.string7, string8, string9, string10)


        # Open the downloaded data
        NC_filename = os.path.join(self.Path,'data_interim.nc')
        fh = Dataset(NC_filename, mode='r')

        # Get the NC variable parameter
        parameter_var = VarInfo.var_name[Var]
        Var_unit = VarInfo.units[Var]
        factors_add = VarInfo.factors_add[Var]
        factors_mul = VarInfo.factors_mul[Var]

        # Open the NC data
        Data = fh.variables[parameter_var][:]
        Data_time = fh.variables['time'][:]
        lons = fh.variables['longitude'][:]
        lats = fh.variables['latitude'][:]

        # Define the georeference information
        Geo_four = np.nanmax(lats)
        Geo_one = np.nanmin(lons)
        Geo_out = tuple([Geo_one, 0.125, 0.0, Geo_four, 0.0, -0.125])

        # Create Waitbar
        if Waitbar == 1:
            total_amount = len(self.Dates)
            amount = 0
            weirdFn.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50)

        for date in self.Dates:

            # Define the year, month and day
            year =  date.year
            month =  date.month
            day =  date.day

            # Hours since 1900-01-01
            start = dt.datetime(year=1900, month=1, day=1)
            end = dt.datetime(year, month, day)
            diff = end - start
            hours_from_start_begin = diff.total_seconds()/60/60

            Date_good = np.zeros(len(Data_time))

            if self.Time == 'daily':
                 days_later = 1
            if self.Time == 'monthly':
                 days_later = calendar.monthrange(year,month)[1]

            Date_good[np.logical_and(Data_time>=hours_from_start_begin, Data_time<(hours_from_start_begin + 24 * days_later))] = 1

            Data_one = np.zeros([int(np.sum(Date_good)),int(np.size(Data,1)),int(np.size(Data,2))])
            Data_one = Data[np.int_(Date_good) == 1, :, :]

            # Calculate the average temperature in celcius degrees
            Data_end = factors_mul * np.nanmean(Data_one,0) + factors_add

            if VarInfo.types[Var] == 'flux':
                Data_end = Data_end * days_later

            VarOutputname = VarInfo.file_name[Var]

            # Define the out name
            name_out = os.path.join(out_dir, "%s_ECMWF_ERA-Interim_%s_%s_%d.%02d.%02d.tif" %(VarOutputname, Var_unit, self.Time, year,month,day))

            # Create Tiff files
            # Raster.Save_as_tiff(name_out, Data_end, Geo_out, "WGS84")
            Raster.CreateRaster(Path=name_out, data=Data_end, geo=Geo_out, EPSG="WGS84")

            if Waitbar == 1:
                amount = amount + 1
                weirdFn.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50)


        fh.close()

        return()