def load_dataset(self, filename, load_dir): (dataset_embeddings, dataset_labels, dataset_imagepaths) = utilities.load_embeddings( load_path=load_dir, embed_filename=filename) print("Total Embeddings {}".format(np.array(dataset_embeddings).shape)) print("Total Labels {}".format(np.array(dataset_labels).shape)) print("Total Images {}".format(np.array(dataset_imagepaths).shape)) return dataset_embeddings, dataset_labels, dataset_imagepaths
cv=cv, verbose=1, n_jobs=-1) # Fit the grid search to the data grid_search.fit(feat_train, lab_train) if __name__ == '__main__': # Create the classifier gbm = GradientBoostMethod() # Load features and labels features, labels, ips = utilities.load_embeddings( load_path=gbm.args["embed_load_dir"], embed_filename=gbm.args["embed_filename"]) # Train using default params ml_classifier = MLClassifier(ml_model=gbm.model, model_name=gbm.name) ml_classifier.train_classifier(features=features, labels=labels, save_model=gbm.args["save_model"], save_name=gbm.args["model_filename"]) # Find the best params gbm.find_best_model_random(feat_train=features, lab_train=labels) gbm.find_best_model_grid(feat_train=features, lab_train=labels) # Train with best found params ml_classifier.set_model(ml_model=gbm.model)
df_full = pd.concat([df_features, df_labels], axis=1) df_full['label'] = df_full['label'].astype(str) #df_full.drop(df_full[df_full["label"] == "Indian"].index, inplace=True) # Plot sns.set_style("dark") fig.add_subplot(rows, cols, i + 1) sns.scatterplot(x='PC1', y='PC2', hue="label", data=df_full, palette=sns.color_palette("hls", colors), alpha=.7, legend="full", x_jitter=20, y_jitter=0).set_title(title) plt.show() if __name__ == '__main__': dataset_embeddings, dataset_labels, dataset_imagepaths = utilities.load_embeddings( embed_filename="embeddings_ethnicity.pkl") plot_dimension_reduction( plots=["PCA", "TSNE", "ISO", "FICA", "LLE", "MDS"], features=dataset_embeddings, labels=dataset_labels, title="Face_Recognition")