def train(reader, title): draw_source_data(reader, title, show=True) # net train num_input = reader.XTrain.shape[1] num_output = 1 hp = HyperParameters_1_1(num_input, num_output, eta=0.5, max_epoch=5000, batch_size=1, eps=2e-3, net_type=NetType.BinaryClassifier) net = NeuralNet_1_2(hp) net.train(reader, checkpoint=1) # test print(Test(net, reader)) # visualize draw_source_data(reader, title, show=False) draw_split_line(net) plt.show()
show=True, isPredicate=True) # 主程序 if __name__ == '__main__': num_category = 3 reader = DataReader_1_3(file_name) reader.ReadData() reader.ToOneHot(num_category, base=1) # show raw data before normalization ShowData(reader.XRaw, reader.YTrain) reader.NormalizeX() num_input = 2 params = HyperParameters_1_1(num_input, num_category, eta=0.1, max_epoch=100, batch_size=10, eps=1e-3, net_type=NetType.MultipleClassifier) net = NeuralNet_1_2(params) net.train(reader, checkpoint=1) xt_raw = np.array([5, 1, 7, 6, 5, 6, 2, 7]).reshape(4, 2) xt = reader.NormalizePredicateData(xt_raw) output = net.inference(xt) print(output) ShowResult(reader.XTrain, reader.YTrain, xt, output)
plt.plot(X[:,0], Y[:,0], '.', c='b') # create and draw visualized validation data TX1 = np.linspace(0,1,100).reshape(100,1) TX2 = np.hstack((TX1, TX1[:,]**2)) TX3 = np.hstack((TX2, TX1[:,]**3)) TX4 = np.hstack((TX3, TX1[:,]**4)) TX5 = np.hstack((TX4, TX1[:,]**5)) TX6 = np.hstack((TX5, TX1[:,]**6)) TX7 = np.hstack((TX6, TX1[:,]**7)) TX8 = np.hstack((TX7, TX1[:,]**8)) TY = net.inference(TX8) plt.plot(TX1, TY, 'x', c='r') plt.title(title) plt.show() #end def if __name__ == '__main__': dataReader = DataReaderEx(file_name) dataReader.ReadData() dataReader.Add() print(dataReader.XTrain.shape) # net num_input = 8 num_output = 1 hp = HyperParameters_1_1(num_input, num_output, eta=0.2, max_epoch=50000, batch_size=10, eps=1e-3, net_type=NetType.Fitting) #params = HyperParameters(eta=0.2, max_epoch=1000000, batch_size=10, eps=1e-3, net_type=NetType.Fitting) net = NeuralNet_1_2(hp) net.train(dataReader, checkpoint=500) ShowResult(net, dataReader, "Polynomial")