def runSimulation(start, solution):
    """
    Returns minumum number of time steps needed to get to solution
    """

    scoredict = {}
    pathway = []
    childrenlist = []
    currentmin = 20

    solution_found = False
    pare_node = Node(start)
    m = (0, pare_node)
    heappush(queue, m)

    tempnode = heappop(queue)
    tempchildren = generateAllChildren(tempnode[1].cargo)
    for k in range(len(tempchildren)):
        tempscore = seriesScore(tempchildren[k])
        initnode = Node(tempchildren[k], tempnode[1])
        v = (tempscore, initnode)
        heappush(queue, v)
        # print queue[k][1]

    print
    while (queue != [] and not solution_found):
        pare_node = heappop(queue)
        # print pare_node[1]
        children = generateAllChildren(pare_node[1].cargo)
        c = selectChildren(children,10)
        for i in range(len(c)):
            score = seriesScore(c[i])
            node = Node(c[i], pare_node[1])
            l = (score, node)
            heappush(queue, l)
            if (c[i] == solution):
                print "Solution: ", c[i]
                solution_found = True
                inversions = 0
                while(node.prev != None):
                    print node
                    pathway.append(node.cargo)
                    node = node.prev
                    inversions += 1
                print "Inversions: ", inversions
                if (inversions < currentmin):
                    scoredict = {}
                    scoredict[inversions] = pathway
                print scoredict
                for key, val in scoredict.items():
                    currentmin = key
                    print currentmin
Exemple #2
0
def runSimulation(start, solution):
    """
    Returns minumum number of time steps needed to get to solution
    """

    solution_found = False
    pare_node = Node(start)
    m = (0, pare_node)
    heappush(queue, m)

    while (queue != [] and not solution_found):
        pare_node = heappop(queue)
        children = generateAllChildren(pare_node[1].cargo)

        c = selectChildren(children)
        for i in range(len(c)):
            score = seriesScore(c[i])
            node = Node(c[i], pare_node[1])
            l = (score, node)
            heappush(queue, l)
            if (c[i] == solution):
                print "Solution: ", c[i]
                solution_found = True
                inversions = 0
                while(node.prev != None):
                    print node
                    node = node.prev
                    inversions += 1
                print "Inversions: ", inversions
def selectChildren(children):

    scores = []
    # calculate "fitness" scores
    for i in range(len(children)):
        s = seriesScore(children[i])
        scores.append(s)
        
    if (fittest == 1):
        return children[scores.index(max(scores))]
Exemple #4
0
def selectChildren(children):

    scores = []
    # calculate "fitness" scores
    for i in range(len(children)):
        s = seriesScore(children[i])
        scores.append(s)

    # check which 3 genomes have the best scores
    dictionary = heapq.nlargest(3, zip(scores, children))

    # put the best genomes in a list before returning
    best_children = []
    for j in range(len(dictionary)):
        best_children.append(dictionary[j][1])

    children = []
    scores = []
    return best_children
def runSimulation(start, solution):
    """
    Returns minumum number of time steps needed to get to solution
    """
    solutionNodes = []
    lowest = 645758
    pare_node = Node(start)
    m = (0, pare_node)
    heappush(queue, m)

    while (queue != []):
        pare_node = heappop(queue)
        children = generateAllChildren(pare_node[1].cargo)

        c = selectChildren(children)
        for i in range(len(c)):
            # create nodes
            node = Node(c[i], pare_node[1])
            if (c[i] == solution):
                solutionNodes.append(node)
                print "length of solutionNodes: ", len(solutionNodes)
            else:
                score = seriesScore(c[i])
                l = (score, node)
                heappush(queue, l)
    inversions = 0
    for j in range(len(solutionNodes)):
        node = solutionNodes[j]
        while((node.prev != None) and (inversions < lowest)):
            print "Step", node
            node = node.prev
            inversions += 1
        if ((inversions < lowest) and (node.prev == None)):
            lowest = inversions
            print "Inversions: ", inversions
        j += 1

    print "Start: ", start
def selectChildren(children):

    scores = []
    # calculate "fitness" scores
    for i in range(len(children)):
        s = 1 - (seriesScore(children[i])/len(start))
        print "SERIESSCORE=:   ", s
        scores.append(s)
        print "SCORES:     ", scores

    # check which 3 genomes have the best scores
    dictionary = heapq.nlargest(4, zip(scores, children))
    print
    print dictionary

    # put the best genomes in a list before returning
    best_children = []
    for j in range(len(dictionary)):
        best_children.append(dictionary[j][1])

    children = []
    scores = []
    return best_children