def extract_rois_signals(preprocessing_folder ='pipeline_2', prefix= 'resampled_wr'): dataset = load_dynacomp(preprocessing_folder = preprocessing_folder,prefix = prefix) for idx, func in enumerate([dataset.func1, dataset.func2]): for i in range(len(dataset.subjects)): tic = time.clock() print func[i] output_path, _ = os.path.split(func[i]) print dataset.subjects[i] maps_img = dict_to_list(dataset.rois[i]) #add mask, smoothing, filter and detrending print 'Nifti' masker = NiftiMapsMasker(maps_img=maps_img, mask_img = dataset.mask, low_pass = .1, high_pass = .01, smoothing_fwhm =6., t_r = 1.05, detrend = True, standardize = False, resampling_target ='data', memory_level = 0, verbose=5) #extract signal to x print 'masker' x = masker.fit_transform(func[i]) print x np.save(os.path.join(PATH_TO_SAVE_DATA,'output' + str(i+1) +'_rois_filter'),x) print time.clock() - tic return x
import os import numpy as np from ICode.loader import load_dynacomp from ICode.estimators.hurst_estimator import Hurst_Estimator from statsmodels.sandbox.stats.multicomp import multipletests from scipy.stats import ttest_ind, ttest_1samp from mne.stats import permutation_t_test import matplotlib.pyplot as plt from nilearn.plotting import plot_stat_map from sklearn.linear_model import LogisticRegression from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler from sklearn.datasets.base import Bunch from matplotlib import rc as changefont dataset = load_dynacomp(preprocessing_folder='pipeline_1', prefix='wr') lr = LogisticRegression() groups = [['av', 'v'], ['av', 'avn'], ['v', 'avn']] def classify_group(group, fc): """Classification for a pair of groups """ ind = np.hstack( (dataset.group_indices[group[0]], dataset.group_indices[group[1]])) #X = fc[ind, :] X = StandardScaler().fit_transform([fc[i] for i in ind]) y = np.array([1] * len(dataset.group_indices[group[0]]) + [-1] * len(dataset.group_indices[group[1]])) sss = StratifiedShuffleSplit(y, n_iter=50, test_size=.25, random_state=42)
import os import numpy as np from ICode.loader import load_dynacomp from ICode.estimators.hurst_estimator import Hurst_Estimator from statsmodels.sandbox.stats.multicomp import multipletests from scipy.stats import ttest_ind, ttest_1samp from mne.stats import permutation_t_test import matplotlib.pyplot as plt from nilearn.plotting import plot_stat_map from sklearn.linear_model import LogisticRegression from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler from sklearn.datasets.base import Bunch from matplotlib import rc as changefont dataset = load_dynacomp(preprocessing_folder='pipeline_1', prefix='wr') lr = LogisticRegression() groups = [ ['av', 'v'], ['av', 'avn'], ['v', 'avn'] ] def classify_group(group, fc): """Classification for a pair of groups """ ind = np.hstack((dataset.group_indices[group[0]], dataset.group_indices[group[1]])) #X = fc[ind, :] X = StandardScaler().fit_transform([fc[i] for i in ind]) y = np.array([1]* len(dataset.group_indices[group[0]]) + [-1]* len(dataset.group_indices[group[1]])) sss = StratifiedShuffleSplit(y, n_iter=50, test_size=.25, random_state=42)