Exemple #1
0
def convert_data(args):
    """
    """
    # Unpack the arguments
    latlim, lonlim, date,\
        product, \
        username, password, apitoken, \
        url_server, url_dir, \
        remote_fname, temp_fname, local_fname,\
        remote_file, temp_file, local_file,\
        y_id, x_id, pixel_size, pixel_w, pixel_h, \
        data_ndv, data_type, data_multiplier, data_variable = args

    # Define local variable
    status_cod = -1

    # post-process remote (from server)
    #  -> temporary (unzip)
    #   -> local (gis)
    msg = 'Converting  "{f}"'.format(f=local_file)
    print('\33[94m{}\33[0m'.format(msg))
    __this.Log.write(datetime.datetime.now(), msg=msg)

    # --------- #
    # Load data #
    # --------- #
    # From downloaded remote file

    # From generated temporary file
    temp_file_part = temp_file.format(dtime=date)
    temp_folder = os.path.dirname(temp_file_part)
    # Generate temporary files
    Extract_Data_zip(remote_file, temp_folder)

    data_raw = Open_tiff_array(temp_file_part)

    # Convert meta data to float
    # if np.logical_or(isinstance(data_raw_missing, str),
    #                  isinstance(data_raw_scale, str)):
    #     data_raw_missing = float(data_raw_missing)
    #     data_raw_scale = float(data_raw_scale)

    # --------- #
    # Clip data #
    # --------- #
    # get data to 2D matrix
    data_tmp = data_raw[y_id[0]:y_id[1], x_id[0]:x_id[1]]

    # check data type
    # filled numpy.ma.MaskedArray as numpy.ndarray
    if isinstance(data_tmp, np.ma.MaskedArray):
        data = data_tmp.filled()
    else:
        data = np.asarray(data_tmp)

    # transfer matrix to GTiff matrix
    # [w,n]--[e,n]
    #   |      |
    # [w,s]--[e,s]
    data = np.asarray(data)

    # [w,s]--[e,s]
    #   |      |
    # [w,n]--[e,n]
    # data = np.flipud(data)

    # [w,n]--[w,s]
    #   |      |
    # [e,n]--[e,s]
    # data = np.transpose(a=data, axes=(1, 0))

    # [w,s]--[w,n]
    #   |      |
    # [e,s]--[e,n]
    # data = np.rot90(data, k=1, axes=(0, 1))

    # close file
    # fh.close()

    # ------- #
    # Convert #
    # ------- #
    # scale, units
    data = np.where(data < 0, np.nan, data)
    data = data * data_multiplier

    # novalue data
    data = np.where(np.isnan(data), data_ndv, data)

    # ------------ #
    # Saveas GTiff #
    # ------------ #
    geo = [lonlim[0], pixel_size, 0,
           latlim[1], 0, -pixel_size]
    Save_as_tiff(name=local_file, data=data, geo=geo, projection="WGS84")

    path = os.path.dirname(os.path.realpath(remote_file))
    if 'remote' != path[-6:]:
        path = os.path.join(path, 'remote')
    clean(path)
    path = os.path.dirname(os.path.realpath(temp_file))
    if 'temporary' != path[-9:]:
        path = os.path.join(path, 'temporary')
    clean(path)

    status_cod = 0
    return status_cod
Exemple #2
0
def DownloadData(status, conf) -> int:
    """This is main interface.

    Args:
      status (dict): Status.
      conf (dict): Configuration.
    """
    __this.account = conf['account']
    __this.product = conf['product']
    __this.Log = Log(conf['log'])

    Waitbar = 0
    cores = 1

    bbox = conf['product']['bbox']
    Startdate = conf['product']['period']['s']
    Enddate = conf['product']['period']['e']

    para_name = conf['product']['parameter']
    resolution = conf['product']['resolution']
    variable = conf['product']['variable']
    TimeFreq = conf['product']['freq']
    latlim = conf['product']['data']['lat']
    lonlim = conf['product']['data']['lon']

    folder = conf['folder']

    # Define parameter depedent variables
    parameter = para_name.lower()
    unit = conf['product']['data']['units']['l']
    latlim = [bbox['s'], bbox['n']]
    lonlim = [bbox['w'], bbox['e']]


    # converts the latlim and lonlim into names of the tiles which must be
    # downloaded
    if resolution == '3s':
        name, rangeLon, rangeLat = Find_Document_Names(latlim, lonlim, parameter)

        # Memory for the map x and y shape (starts with zero)
        size_X_tot = 0
        size_Y_tot = 0

    if resolution == '15s' or resolution == '30s':
        name = Find_Document_names_15s_30s(latlim, lonlim, parameter, resolution)

    nameResults = []
    # Create a temporary folder for processing
    output_folder = folder['l']
    output_folder_trash = folder['t']

    # Download, extract, and converts all the files to tiff files
    for nameFile in name:

        try:
            # Download the data from
            # http://earlywarning.usgs.gov/hydrodata/
            output_file, file_name = Download_Data(nameFile,
                                                   output_folder_trash, parameter,
                                                   para_name, resolution)

            # extract zip data
            Extract_Data_zip(output_file, output_folder_trash)

            # Converts the data with a adf extention to a tiff extension.
            # The input is the file name and in which directory the data must be stored
            file_name_tiff = file_name.split('.')[0] + '_trans_temporary.tif'
            file_name_extract = file_name.split('_')[0:3]
            if resolution == '3s':
                file_name_extract2 = file_name_extract[0] + '_' + file_name_extract[1]

            if resolution == '15s':
                file_name_extract2 = file_name_extract[0] + '_' + file_name_extract[1] + '_15s'

            if resolution == '30s':
                file_name_extract2 = file_name_extract[0] + '_' + file_name_extract[1] + '_30s'

            output_tiff = os.path.join(output_folder_trash, file_name_tiff)

            # convert data from adf to a tiff file
            if (resolution == "15s" or resolution == "3s"):
                input_adf = os.path.join(output_folder_trash, file_name_extract2,
                                         file_name_extract2, 'hdr.adf')
                output_tiff = Convert_adf_to_tiff(input_adf, output_tiff)

            # convert data from adf to a tiff file
            if resolution == "30s":
                input_bil = os.path.join(output_folder_trash,
                                         '%s.bil' % file_name_extract2)
                output_tiff = Convert_bil_to_tiff(input_bil, output_tiff)

            geo_out, proj, size_X, size_Y = Open_array_info(output_tiff)
            if (resolution == "3s" and (
                    int(size_X) != int(6000) or int(size_Y) != int(6000))):
                data = np.ones((6000, 6000)) * -9999

                # Create the latitude bound
                Vfile = str(nameFile)[1:3]
                SignV = str(nameFile)[0]
                SignVer = 1

                # If the sign before the filename is a south sign than latitude is negative
                if SignV is "s":
                    SignVer = -1
                Bound2 = int(SignVer) * int(Vfile)

                # Create the longitude bound
                Hfile = str(nameFile)[4:7]
                SignH = str(nameFile)[3]
                SignHor = 1
                # If the sign before the filename is a west sign than longitude is negative
                if SignH is "w":
                    SignHor = -1
                Bound1 = int(SignHor) * int(Hfile)

                Expected_X_min = Bound1
                Expected_Y_max = Bound2 + 5

                Xid_start = int(np.round((geo_out[0] - Expected_X_min) / geo_out[1]))
                Xid_end = int(np.round(
                    ((geo_out[0] + size_X * geo_out[1]) - Expected_X_min) / geo_out[1]))
                Yid_start = int(np.round((Expected_Y_max - geo_out[3]) / (-geo_out[5])))
                Yid_end = int(np.round(
                    (Expected_Y_max - (geo_out[3] + (size_Y * geo_out[5]))) / (
                        -geo_out[5])))

                data[Yid_start:Yid_end, Xid_start:Xid_end] = Open_tiff_array(
                    output_tiff)
                if np.max(data) == 255:
                    data[data == 255] = -9999
                data[data < -9999] = -9999

                geo_in = [Bound1, 0.00083333333333333, 0.0, int(Bound2 + 5),
                          0.0, -0.0008333333333333333333]

                # save chunk as tiff file
                Save_as_tiff(name=output_tiff, data=data, geo=geo_in, projection="WGS84")

        except:

            if resolution == '3s':
                # If tile not exist create a replacing zero tile (sea tiles)
                output = nameFile.split('.')[0] + "_trans_temporary.tif"
                output_tiff = os.path.join(output_folder_trash, output)
                file_name = nameFile
                data = np.ones((6000, 6000)) * -9999
                data = data.astype(np.float32)

                # Create the latitude bound
                Vfile = str(file_name)[1:3]
                SignV = str(file_name)[0]
                SignVer = 1
                # If the sign before the filename is a south sign than latitude is negative
                if SignV is "s":
                    SignVer = -1
                Bound2 = int(SignVer) * int(Vfile)

                # Create the longitude bound
                Hfile = str(file_name)[4:7]
                SignH = str(file_name)[3]
                SignHor = 1
                # If the sign before the filename is a west sign than longitude is negative
                if SignH is "w":
                    SignHor = -1
                Bound1 = int(SignHor) * int(Hfile)

                # Geospatial data for the tile
                geo_in = [Bound1, 0.00083333333333333, 0.0, int(Bound2 + 5),
                          0.0, -0.0008333333333333333333]

                # save chunk as tiff file
                Save_as_tiff(name=output_tiff, data=data, geo=geo_in, projection="WGS84")

            if resolution == '15s':
                print('no 15s data is in dataset')

        if resolution == '3s':

            # clip data
            Data, Geo_data = Clip_Data(output_tiff, latlim, lonlim)
            size_Y_out = int(np.shape(Data)[0])
            size_X_out = int(np.shape(Data)[1])

            # Total size of the product so far
            size_Y_tot = int(size_Y_tot + size_Y_out)
            size_X_tot = int(size_X_tot + size_X_out)

            if nameFile is name[0]:
                Geo_x_end = Geo_data[0]
                Geo_y_end = Geo_data[3]
            else:
                Geo_x_end = np.min([Geo_x_end, Geo_data[0]])
                Geo_y_end = np.max([Geo_y_end, Geo_data[3]])

            # create name for chunk
            FileNameEnd = "%s_temporary.tif" % (nameFile)
            nameForEnd = os.path.join(output_folder_trash, FileNameEnd)
            nameResults.append(str(nameForEnd))

            # save chunk as tiff file
            Save_as_tiff(name=nameForEnd, data=Data, geo=Geo_data, projection="WGS84")

    if resolution == '3s':
        # size_X_end = int(size_X_tot) #!
        # size_Y_end = int(size_Y_tot) #!

        size_X_end = int(size_X_tot / len(rangeLat)) + 1  # !
        size_Y_end = int(size_Y_tot / len(rangeLon)) + 1  # !

        # Define the georeference of the end matrix
        geo_out = [Geo_x_end, Geo_data[1], 0, Geo_y_end, 0, Geo_data[5]]

        latlim_out = [geo_out[3] + geo_out[5] * size_Y_end, geo_out[3]]
        lonlim_out = [geo_out[0], geo_out[0] + geo_out[1] * size_X_end]

        # merge chunk together resulting in 1 tiff map
        datasetTot = Merge_DEM(latlim_out, lonlim_out, nameResults, size_Y_end,
                               size_X_end)

        datasetTot[datasetTot < -9999] = -9999

    if resolution == '15s':
        output_file_merged = os.path.join(output_folder_trash, 'merged.tif')
        datasetTot, geo_out = Merge_DEM_15s_30s(output_folder_trash, output_file_merged,
                                                latlim, lonlim, resolution)

    if resolution == '30s':
        output_file_merged = os.path.join(output_folder_trash, 'merged.tif')
        datasetTot, geo_out = Merge_DEM_15s_30s(output_folder_trash, output_file_merged,
                                                latlim, lonlim, resolution)

    # name of the end result
    output_DEM_name = "%s_HydroShed_%s_%s.tif" % (para_name, unit, resolution)

    Save_name = os.path.join(output_folder, output_DEM_name)

    # Make geotiff file
    Save_as_tiff(name=Save_name, data=datasetTot, geo=geo_out, projection="WGS84")
    os.chdir(output_folder)
Exemple #3
0
def convert_data(args):
    """
    """
    # Unpack the arguments
    latlim, lonlim, date, \
        product, \
        username, password, apitoken, \
        url_server, url_dir, \
        remote_fname, temp_fname, local_fname,\
        remote_file, temp_file, local_file,\
        y_id, x_id, pixel_size, pixel_w, pixel_h, \
        data_ndv, data_type, data_multiplier, data_variable = args

    # Define local variable
    status_cod = -1

    # post-process remote (from server)
    #  -> temporary (unzip)
    #   -> local (gis)
    msg = 'Converting  "{f}"'.format(f=local_file)
    print('\33[94m{}\33[0m'.format(msg))
    __this.Log.write(datetime.datetime.now(), msg=msg)

    # --------- #
    # Load data #
    # --------- #
    # From downloaded remote file
    remote_fnames, remote_files = start_download_tiles(latlim, lonlim,
                                                       remote_fname,
                                                       remote_file)
    temp_file_part = []
    # temp_file_part_4326 = []
    for ifile in range(len(remote_fnames)):
        # From downloaded remote file

        # From generated temporary file
        temp_file_part.append(
            temp_file.format(ipart=str(ifile + 1)))
        # temp_file_part_4326.append(
        #     temp_file.format(dtime=date, ipart='{}_4326'.format(str(ifile + 1))))

        # Generate temporary files
        # Convert_hdf5_to_tiff(remote_files[ifile], temp_file_part[ifile],
        #                      data_variable)
        #
        # reproject_MODIS(temp_file_part[ifile], temp_file_part_4326[ifile], '4326')

        # Clip_Dataset_GDAL(remote_files[ifile], temp_file_part[ifile],
        #                   latlim, lonlim)

        geo_trans, geo_proj, size_x, size_y = Open_array_info(remote_files[ifile])
        lat_min_merge = np.maximum(latlim[0], geo_trans[3] + size_y * geo_trans[5])
        lat_max_merge = np.minimum(latlim[1], geo_trans[3])
        lon_min_merge = np.maximum(lonlim[0], geo_trans[0])
        lon_max_merge = np.minimum(lonlim[1], geo_trans[0] + size_x * geo_trans[1])

        lonmerge = [lon_min_merge, lon_max_merge]
        latmerge = [lat_min_merge, lat_max_merge]

        Clip_Dataset_GDAL(remote_files[ifile], temp_file_part[ifile],
                          latmerge, lonmerge)

        # Convert meta data to float
        # if np.logical_or(isinstance(data_raw_missing, str),
        #                  isinstance(data_raw_scale, str)):
        #     data_raw_missing = float(data_raw_missing)
        #     data_raw_scale = float(data_raw_scale)

    temp_file_part_all = temp_file.format(ipart=0)
    Merge_Dataset_GDAL(temp_file_part, temp_file_part_all)

    # get data to 2D matrix
    geo_trans, geo_proj, \
        size_x, size_y = Open_array_info(temp_file_part_all)
    lat_min_merge = np.maximum(latlim[0], geo_trans[3] + size_y * geo_trans[5])
    lat_max_merge = np.minimum(latlim[1], geo_trans[3])
    lon_min_merge = np.maximum(lonlim[0], geo_trans[0])
    lon_max_merge = np.minimum(lonlim[1], geo_trans[0] + size_x * geo_trans[1])

    lonmerge = [lon_min_merge, lon_max_merge]
    latmerge = [lat_min_merge, lat_max_merge]

    data_tmp = Open_tiff_array(temp_file_part_all)

    # check data type
    # filled numpy.ma.MaskedArray as numpy.ndarray
    if isinstance(data_tmp, np.ma.MaskedArray):
        data = data_tmp.filled()
    else:
        data = np.asarray(data_tmp)

    # transfer matrix to GTiff matrix
    # [w,n]--[e,n]
    #   |      |
    # [w,s]--[e,s]
    data = np.asarray(data)

    # [w,s]--[e,s]
    #   |      |
    # [w,n]--[e,n]
    # data = np.flipud(data)

    # [w,n]--[w,s]
    #   |      |
    # [e,n]--[e,s]
    # data = np.transpose(a=data, axes=(1, 0))

    # [w,s]--[w,n]
    #   |      |
    # [e,s]--[e,n]
    # data = np.rot90(data, k=1, axes=(0, 1))

    # close file
    # fh.close()

    # ------- #
    # Convert #
    # ------- #
    # scale, units
    # data = np.where(data < 0, np.nan, data)
    data = data * data_multiplier

    # novalue data
    data = np.where(np.isnan(data), data_ndv, data)

    # ------------ #
    # Saveas GTiff #
    # ------------ #
    geo = [lonmerge[0] - geo_trans[1], geo_trans[1], 0,
           latmerge[1] - geo_trans[5] / 2., 0, geo_trans[5]]
    Save_as_tiff(name=local_file, data=data, geo=geo, projection="WGS84")

    if __this.conf['is_save_remote']:
        pass
    else:
        path = os.path.dirname(os.path.realpath(remote_file))
        if 'remote' != path[-6:]:
            path = os.path.join(path, 'remote')
        clean(path)
    if __this.conf['is_save_temp']:
        pass
    else:
        path = os.path.dirname(os.path.realpath(temp_file))
        if 'temporary' != path[-9:]:
            path = os.path.join(path, 'temporary')
        clean(path)

    status_cod = 0
    return status_cod
Exemple #4
0
def Merge_DEM_15s_30s(output_folder_trash, output_file_merged, latlim, lonlim,
                      resolution):
    os.chdir(output_folder_trash)
    tiff_files = glob.glob('*.tif')
    resolution_geo = []
    lonmin = lonlim[0]
    lonmax = lonlim[1]
    latmin = latlim[0]
    latmax = latlim[1]
    if resolution == "15s":
        resolution_geo = 0.00416667
    if resolution == "30s":
        resolution_geo = 0.00416667 * 2

    size_x_tot = int(np.round((lonmax - lonmin) / resolution_geo))
    size_y_tot = int(np.round((latmax - latmin) / resolution_geo))

    data_tot = np.ones([size_y_tot, size_x_tot]) * -9999.

    for tiff_file in tiff_files:
        inFile = os.path.join(output_folder_trash, tiff_file)
        geo, proj, size_X, size_Y = Open_array_info(inFile)
        resolution_geo = geo[1]

        lonmin_one = geo[0]
        lonmax_one = geo[0] + size_X * geo[1]
        latmin_one = geo[3] + size_Y * geo[5]
        latmax_one = geo[3]

        if lonmin_one < lonmin:
            lonmin_clip = lonmin
        else:
            lonmin_clip = lonmin_one

        if lonmax_one > lonmax:
            lonmax_clip = lonmax
        else:
            lonmax_clip = lonmax_one

        if latmin_one < latmin:
            latmin_clip = latmin
        else:
            latmin_clip = latmin_one

        if latmax_one > latmax:
            latmax_clip = latmax
        else:
            latmax_clip = latmax_one

        size_x_clip = int(np.round((lonmax_clip - lonmin_clip) / resolution_geo))
        size_y_clip = int(np.round((latmax_clip - latmin_clip) / resolution_geo))

        inFile = os.path.join(output_folder_trash, tiff_file)
        geo, proj, size_X, size_Y = Open_array_info(inFile)
        Data = Open_tiff_array(inFile)
        lonmin_tiff = geo[0]
        latmax_tiff = geo[3]
        lon_tiff_position = int(np.round((lonmin_clip - lonmin_tiff) / resolution_geo))
        lat_tiff_position = int(np.round((latmax_tiff - latmax_clip) / resolution_geo))
        lon_data_tot_position = int(np.round((lonmin_clip - lonmin) / resolution_geo))
        lat_data_tot_position = int(np.round((latmax - latmax_clip) / resolution_geo))

        Data[Data < -9999.] = -9999.
        data_tot[lat_data_tot_position:lat_data_tot_position + size_y_clip,
        lon_data_tot_position:lon_data_tot_position + size_x_clip][
            data_tot[lat_data_tot_position:lat_data_tot_position + size_y_clip,
            lon_data_tot_position:lon_data_tot_position + size_x_clip] == -9999] = \
        Data[lat_tiff_position:lat_tiff_position + size_y_clip,
        lon_tiff_position:lon_tiff_position + size_x_clip][
            data_tot[lat_data_tot_position:lat_data_tot_position + size_y_clip,
            lon_data_tot_position:lon_data_tot_position + size_x_clip] == -9999]

    geo_out = [lonmin, resolution_geo, 0.0, latmax, 0.0, -1 * resolution_geo]
    geo_out = tuple(geo_out)
    data_tot[data_tot < -9999.] = -9999.

    return (data_tot, geo_out)