def get_em2d_restraint(assembly, images_selection_file, restraint_params, mode="fast", n_optimized=1): """ Sets a restraint for comparing the model to a set of EM images """ model = assembly.get_model() # Setup the restraint sc = em2d.EM2DScore() r = em2d.Em2DRestraint(model) r.setup(sc, restraint_params) names = em2d.read_selection_file(images_selection_file) names = [base.get_relative_path(images_selection_file, x) for x in names] log.debug("names of the images %s", names) srw = em2d.SpiderImageReaderWriter() imgs = em2d.read_images(names, srw) r.set_images(imgs) ps = atom.get_leaves(assembly) lsc = container.ListSingletonContainer(ps) r.set_particles(lsc) if (mode == "coarse"): r.set_coarse_registration_mode(True) elif (mode == "fast"): r.set_fast_mode(n_optimized) elif (mode == "complete"): pass else: raise ValueError("Em2DRestraint mode not recognized") return r
def test_building_an_optimization_problem_with_em2d_restraint(self): """Test that an a optimization with em2d restraint is properly built""" m = IMP.kernel.Model() prot = IMP.atom.read_pdb(self.get_input_file_name("1z5s.pdb"), m, IMP.atom.ATOMPDBSelector()) # get the chains chains = IMP.atom.get_by_type(prot, IMP.atom.CHAIN_TYPE) # set the chains as rigid bodies rigid_bodies = [] native_chain_centers = [] for c in chains: atoms = IMP.core.get_leaves(c) rbd = IMP.core.RigidBody.setup_particle(c, atoms) rbd.set_coordinates_are_optimized(True) rigid_bodies.append(rbd) native_chain_centers.append(rbd.get_coordinates()) self.assertEqual( len(rigid_bodies), 4, "Problem generating rigid bodies") bb = IMP.algebra.BoundingBox3D(IMP.algebra.Vector3D(-25, -40, -60), IMP.algebra.Vector3D(25, 40, 60)) # set distance restraints d01 = IMP.algebra.get_distance(native_chain_centers[0], native_chain_centers[1]) r01 = IMP.core.DistanceRestraint(IMP.core.Harmonic(d01, 1), chains[0], chains[1]) r01.set_name("distance 0-1") d12 = IMP.algebra.get_distance(native_chain_centers[1], native_chain_centers[2]) r12 = IMP.core.DistanceRestraint(IMP.core.Harmonic(d12, 1), chains[1], chains[2]) r12.set_name("distance 1-2") d23 = IMP.algebra.get_distance(native_chain_centers[2], native_chain_centers[3]) r23 = IMP.core.DistanceRestraint(IMP.core.Harmonic(d23, 1), chains[2], chains[3]) r23.set_name("distance 2-3") d30 = IMP.algebra.get_distance(native_chain_centers[3], native_chain_centers[0]) r30 = IMP.core.DistanceRestraint(IMP.core.Harmonic(d30, 1), chains[3], chains[0]) r30.set_name("distance 3-0") # set distance restraints for r in [r01, r12, r23, r30]: m.add_restraint(r) self.assertEqual(m.get_number_of_restraints(), 4, "Incorrect number of distance restraints") # set em2D restraint srw = em2d.SpiderImageReaderWriter() selection_file = self.get_input_file_name("all-1z5s-projections.sel") images_to_read_names = [IMP.base.get_relative_path(selection_file, x) for x in em2d.read_selection_file(selection_file)] em_images = em2d.read_images(images_to_read_names, srw) self.assertEqual(len(em_images), 3, "Incorrect number images read") apix = 1.5 resolution = 1 n_projections = 20 params = em2d.Em2DRestraintParameters(apix, resolution, n_projections) params.save_match_images = False params.coarse_registration_method = em2d.ALIGN2D_PREPROCESSING score_function = em2d.EM2DScore() em2d_restraint = em2d.Em2DRestraint(m) em2d_restraint.setup(score_function, params) em2d_restraint.set_images(em_images) em2d_restraint.set_name("em2d restraint") container = IMP.container.ListSingletonContainer( IMP.core.get_leaves(prot)) em2d_restraint.set_particles(container) em2d_restraints_set = IMP.kernel.RestraintSet(m) em2d_restraints_set.add_restraint(em2d_restraint) em2d_restraints_set.set_weight(1000) # weight for the em2D restraint m.add_restraint(em2d_restraints_set) self.assertEqual(m.get_number_of_restraints(), 5, "Incorrect number of restraints") # MONTECARLO OPTIMIZATION s = IMP.core.MonteCarlo(m) # Add movers for the rigid bodies movers = [] for rbd in rigid_bodies: movers.append(IMP.core.RigidBodyMover(rbd, 5, 2)) s.add_movers(movers) self.assertEqual(s.get_number_of_movers(), 4, "Incorrect number of MonteCarlo movers") # Optimizer state to save intermediate configurations o_state = IMP.atom.WritePDBOptimizerState(chains, "intermediate-step-%1%.pdb") o_state.set_period(11) s.add_optimizer_state(o_state) ostate2 = WriteStatisticsOptimizerScore(m) s.add_optimizer_state(ostate2) # Perform optimization temperatures = [200, 100, 60, 40, 20, 5] optimization_steps = 200 # for temp in temperatures: # s.optimize(optimization_steps) # IMP.atom.write_pdb(prot,"solution.pdb") self.assertTrue(True)
def test_registration(self): """Test the registration of 3 subjects from 1gyt.pdb at 0.5 SNR""" # Get model from PDB file smodel = IMP.Model() ssel = IMP.atom.ATOMPDBSelector() fn_model = self.get_input_file_name("1gyt.pdb") prot = IMP.atom.read_pdb(fn_model, smodel, ssel) particles = IMP.core.get_leaves(prot) # Read subject images srw = em2d.SpiderImageReaderWriter() selection_file = self.get_input_file_name("1gyt-subjects-0.5-SNR.sel") images_to_read_names = em2d.read_selection_file(selection_file) for i in range(0, len(images_to_read_names)): images_to_read_names[i] = self.get_input_file_name( images_to_read_names[i]) subjects = em2d.read_images(images_to_read_names, srw) self.assertEqual(len(subjects), 3, "Problem reading subject images") # Generate 20 evenly distributed projections from the PDB file n_projections = 20 proj_params = em2d.get_evenly_distributed_registration_results( n_projections) rows = 128 cols = 128 pixel_size = 1.5 # for generating projections, use a very high resolution resolution = 8.5 options = em2d.ProjectingOptions(pixel_size, resolution) projections = em2d.get_projections(particles, proj_params, rows, cols, options) self.assertEqual(len(projections), n_projections, "Problem generating projections") # Prepare registration # IMP.set_log_level(IMP.VERBOSE) finder = em2d.ProjectionFinder() score_function = em2d.EM2DScore() params = em2d.Em2DRestraintParameters(pixel_size, resolution, n_projections) params.save_match_images = False params.coarse_registration_method = em2d.ALIGN2D_PREPROCESSING params.optimization_steps = 30 params.simplex_initial_length = 0.1 params.simplex_minimum_size = 0.01 finder.setup(score_function, params) finder.set_model_particles(particles) finder.set_subjects(subjects) finder.set_projections(projections) finder.set_fast_mode(2) finder.get_complete_registration() # Recover the registration results: registration_parameters = finder.get_registration_results() fn_registration_results = "my_1gyt_registration.params" em2d.write_registration_results(fn_registration_results, registration_parameters) # Read the correct registration results: correct_parameters = em2d.read_registration_results( self.get_input_file_name("1gyt-subjects-0.5-SNR.params")) print("determined: ") for r in registration_parameters: print(r.get_rotation(), r.get_shift()) print("correct: ") for r in correct_parameters: print(r.get_rotation(), r.get_shift()) for i in range(0, len(registration_parameters)): # Generate the registered projection imgx = em2d.Image() imgx.set_size(rows, cols) em2d.get_projection(imgx, particles, registration_parameters[i], options) ccc = em2d.get_cross_correlation_coefficient( subjects[i].get_data(), imgx.get_data()) print(i, "ccc", ccc) snr = 0.5 theoretical_ccc = (snr / (1. + snr))**.5 self.assertAlmostEqual( ccc, theoretical_ccc, delta=0.02, msg="Error in registration of subject %d: ccc %8.3f " "theoretical_ccc %8.3f " % (i, ccc, theoretical_ccc)) os.remove(fn_registration_results)
def test_rigid_body_image_fit_restraint(self): """Test scoring with RigidBodiesImageFitRestraint""" m = IMP.kernel.Model() # read full complex fn = self.get_input_file_name("1z5s.pdb") prot = atom.read_pdb(fn, m, IMP.atom.ATOMPDBSelector()) # read components names = ["1z5sA", "1z5sB", "1z5sC", "1z5sD"] fn_pdbs = [self.get_input_file_name(name + ".pdb") for name in names] components = [ atom.read_pdb(fn, m, IMP.atom.ATOMPDBSelector()) for fn in fn_pdbs ] components_rbs = [atom.create_rigid_body(c) for c in components] # img R = alg.get_identity_rotation_3d() reg = em2d.RegistrationResult(R) img = em2d.Image() img.set_size(80, 80) srw = em2d.SpiderImageReaderWriter() resolution = 5 pixel_size = 1.5 options = em2d.ProjectingOptions(pixel_size, resolution) ls = core.get_leaves(prot) em2d.get_projection(img, ls, reg, options) # img.write("rbfit_test_image.spi",srw) # set restraint score_function = em2d.EM2DScore() rb_fit = em2d.RigidBodiesImageFitRestraint(score_function, components_rbs, img) pp = em2d.ProjectingParameters(pixel_size, resolution) rb_fit.set_projecting_parameters(pp) # set the trivial case: n_masks = 1 for rb in components_rbs: # set as the only possible orientation the one that the rigid # body already has rb_fit.set_orientations(rb, [ rb.get_reference_frame().get_transformation_to().get_rotation( ) ]) self.assertEqual(rb_fit.get_number_of_masks(rb), n_masks, "Incorrect number rigid body masks") # Calculate the positions of the rigid bodies respect to the centroid # of the entire molecule ls = core.get_leaves(prot) xyzs = core.XYZs(ls) centroid = core.get_centroid(xyzs) coords = [rb.get_coordinates() - centroid for rb in components_rbs] for rb, coord in zip(components_rbs, coords): rb.set_coordinates(coord) # Check that the value is a perfect registration m.add_restraint(rb_fit) score = rb_fit.evaluate(False) # print "score ...", score # It seems that projecting with the masks is slightly less accurate # I have to establish a tolerance of 0.03 self.assertAlmostEqual(score, 0, delta=0.03, msg="Wrong value for the score %f " % (score))