Exemple #1
0
    def test_read_jpg(self):
        """Test of JPGReaderWriter reading"""
        srw = em2d.SpiderImageReaderWriter()
        jrw = em2d.JPGImageReaderWriter()
        fn_jpg_img = self.get_input_file_name("lena-256x256.jpg")
        jpg_img = em2d.Image(fn_jpg_img, jrw)
        fn_spider_img = self.get_input_file_name("lena-256x256.spi")
        spider_img = em2d.Image(fn_spider_img, srw)

        rows = int(jpg_img.get_header().get_number_of_rows())
        cols = int(jpg_img.get_header().get_number_of_columns())

        self.assertEqual(spider_img.get_header().get_number_of_rows(), rows)
        self.assertEqual(spider_img.get_header().get_number_of_columns(), cols)

        for i in range(0, rows):
            for j in range(0, cols):
                # due to rounding, integer numbers in the jpg file can vary
                # to the next integer. Allow delta 1
                self.assertAlmostEqual(
                    abs(spider_img(i, j) - jpg_img(i, j)),
                    0,
                    delta=1,
                    msg="JPG image is not equal to spider image "
                    "at pixel (%d,%d)" % (i, j))
Exemple #2
0
    def test_read_tiff(self):
        """Test of TIFFReaderWriter reading"""
        srw = em2d.SpiderImageReaderWriter()
        trw = em2d.TIFFImageReaderWriter()
        fn_tif_img = self.get_input_file_name("lena-256x256.tif")
        tif_img = em2d.Image(fn_tif_img, trw)
        fn_spider_img = self.get_input_file_name("lena-256x256.spi")
        spider_img = em2d.Image(fn_spider_img, srw)
        rows = int(tif_img.get_header().get_number_of_rows())
        cols = int(tif_img.get_header().get_number_of_columns())

        self.assertEqual(spider_img.get_header().get_number_of_rows(), rows)
        self.assertEqual(spider_img.get_header().get_number_of_columns(), cols)
        ccc = em2d.get_cross_correlation_coefficient(tif_img.get_data(),
                                                     spider_img.get_data())
        self.assertAlmostEqual(ccc, 1, delta=0.01, msg="ccc ins not 1")
Exemple #3
0
 def test_random_projection_generation(self):
     """Generation of random projection from a PDB file with em2d images"""
     testfile = "opencv_test.spi"
     if os.path.isfile(testfile):
         # delete the file to check
         os.remove(testfile)
     smodel = IMP.Model()
     ssel = IMP.atom.ATOMPDBSelector()
     prot = IMP.atom.read_pdb(
         self.get_input_file_name("1z5s.pdb"),
         smodel,
         ssel)
     IMP.atom.add_radii(prot)
     particles = IMP.core.get_leaves(prot)
     rows = 80
     cols = 80
     resolution = 1
     apix = 1.5
     img = em2d.Image()
     img.set_size(rows, cols)
     srw = em2d.SpiderImageReaderWriter()
     rr = em2d.RegistrationResult()
     rr.set_random_registration(0, 5)
     options = em2d.ProjectingOptions(apix, resolution)
     options.srw = srw
     em2d.get_projection(img, particles, rr, options)
     img.write(testfile, srw)
     self.assertTrue(os.path.isfile(testfile),
                     "Projection image not generated")
     os.remove(testfile)
Exemple #4
0
 def test_write_jpg(self):
     """Test of JPGReaderWriter writing"""
     jrw = em2d.JPGImageReaderWriter()
     fn_img1 = self.get_input_file_name("lena-256x256.jpg")
     img1 = em2d.Image(fn_img1, jrw)
     fn_img2 = "temp.jpg"
     img1.write(fn_img2, jrw)
     img2 = em2d.Image(fn_img2, jrw)
     # Use the ccc for testing instead of the pixel values. The matrix
     # in img2 is transformed from floats to ints son it can be written.
     # Values can change, but the ccc has to be very close to 1.
     ccc = em2d.get_cross_correlation_coefficient(img1.get_data(),
                                                  img2.get_data())
     self.assertAlmostEqual(ccc, 1, delta=0.05,
                            msg="Written JPG image is not equal to read ")
     os.remove(fn_img2)
Exemple #5
0
 def test_polar_resampling(self):
     """Test of polar resampling of images"""
     srw = em2d.SpiderImageReaderWriter()
     fn_input = self.get_input_file_name("1gyt-subject-1-0.5-SNR.spi")
     img = em2d.Image(fn_input, srw)
     polar_params = em2d.PolarResamplingParameters()
     polar = em2d.Image()
     em2d.do_resample_polar(img, polar, polar_params)
     fn_saved = self.get_input_file_name("1gyt-subject-1-0.5-SNR-polar.spi")
     saved = em2d.Image(fn_saved, srw)
     rows = int(polar.get_header().get_number_of_rows())
     cols = int(polar.get_header().get_number_of_columns())
     for i in range(0, rows):
         for j in range(0, cols):
             self.assertAlmostEqual(saved(i, j), polar(i, j), delta=0.001,
                                    msg="Generated polar image is different from stored"
                                    " row %d col %d" % (i, j))
Exemple #6
0
    def test_substract(self):
        """Test subtracting images"""
        srw = em2d.SpiderImageReaderWriter()
        rows = int(10)
        cols = int(5)
        img1 = em2d.Image(rows, cols)
        img2 = em2d.Image(rows, cols)
        result = em2d.Image(rows, cols)
        for i in range(0, rows):
            for j in range(0, cols):
                img1.set_value(i, j, random.uniform(-1, 1))
                img2.set_value(i, j, img1(i, j))

        em2d.do_subtract_images(img1, img2, result)
        for i in range(0, rows):
            for j in range(0, cols):
                self.assertAlmostEqual(abs(result(i, j)), 0, delta=0.001,
                                       msg="Subtract images error")
Exemple #7
0
 def test_write_error_jpg(self):
     """Test that writing with JPGReaderWriter fails with bad extension"""
     jrw = em2d.JPGImageReaderWriter()
     fn_img1 = self.get_input_file_name("lena-256x256.jpg")
     img1 = em2d.Image(fn_img1, jrw)
     self.assertRaises(IOError, img1.write, "temp.xxx", jrw)
Exemple #8
0
    def test_registration(self):
        """Test the registration of 3 subjects from 1gyt.pdb at 0.5 SNR"""
        # Get model from PDB file
        smodel = IMP.Model()
        ssel = IMP.atom.ATOMPDBSelector()
        fn_model = self.get_input_file_name("1gyt.pdb")
        prot = IMP.atom.read_pdb(fn_model, smodel, ssel)
        particles = IMP.core.get_leaves(prot)
        # Read subject images
        srw = em2d.SpiderImageReaderWriter()
        selection_file = self.get_input_file_name("1gyt-subjects-0.5-SNR.sel")
        images_to_read_names = em2d.read_selection_file(selection_file)
        for i in range(0, len(images_to_read_names)):
            images_to_read_names[i] = self.get_input_file_name(
                images_to_read_names[i])
        subjects = em2d.read_images(images_to_read_names, srw)
        self.assertEqual(len(subjects), 3, "Problem reading subject images")

        # Generate 20 evenly distributed projections from the PDB file
        n_projections = 20
        proj_params = em2d.get_evenly_distributed_registration_results(
            n_projections)
        rows = 128
        cols = 128
        pixel_size = 1.5
        # for generating projections, use a very high resolution
        resolution = 8.5
        options = em2d.ProjectingOptions(pixel_size, resolution)
        projections = em2d.get_projections(particles, proj_params, rows, cols,
                                           options)
        self.assertEqual(len(projections), n_projections,
                         "Problem generating projections")
        # Prepare registration
        # IMP.set_log_level(IMP.VERBOSE)
        finder = em2d.ProjectionFinder()
        score_function = em2d.EM2DScore()

        params = em2d.Em2DRestraintParameters(pixel_size, resolution,
                                              n_projections)
        params.save_match_images = False
        params.coarse_registration_method = em2d.ALIGN2D_PREPROCESSING
        params.optimization_steps = 30
        params.simplex_initial_length = 0.1
        params.simplex_minimum_size = 0.01

        finder.setup(score_function, params)
        finder.set_model_particles(particles)
        finder.set_subjects(subjects)
        finder.set_projections(projections)
        finder.set_fast_mode(2)
        finder.get_complete_registration()
        # Recover the registration results:
        registration_parameters = finder.get_registration_results()
        fn_registration_results = "my_1gyt_registration.params"
        em2d.write_registration_results(fn_registration_results,
                                        registration_parameters)
        # Read the correct registration results:
        correct_parameters = em2d.read_registration_results(
            self.get_input_file_name("1gyt-subjects-0.5-SNR.params"))

        print("determined: ")
        for r in registration_parameters:
            print(r.get_rotation(), r.get_shift())
        print("correct: ")
        for r in correct_parameters:
            print(r.get_rotation(), r.get_shift())
        for i in range(0, len(registration_parameters)):
            # Generate the registered projection
            imgx = em2d.Image()
            imgx.set_size(rows, cols)
            em2d.get_projection(imgx, particles, registration_parameters[i],
                                options)
            ccc = em2d.get_cross_correlation_coefficient(
                subjects[i].get_data(), imgx.get_data())
            print(i, "ccc", ccc)
            snr = 0.5
            theoretical_ccc = (snr / (1. + snr))**.5
            self.assertAlmostEqual(
                ccc,
                theoretical_ccc,
                delta=0.02,
                msg="Error in registration of subject %d: ccc %8.3f "
                "theoretical_ccc %8.3f " % (i, ccc, theoretical_ccc))
        os.remove(fn_registration_results)
Exemple #9
0
    def test_rigid_body_image_fit_restraint(self):
        """Test scoring with RigidBodiesImageFitRestraint"""
        m = IMP.kernel.Model()

        # read full complex
        fn = self.get_input_file_name("1z5s.pdb")
        prot = atom.read_pdb(fn, m, IMP.atom.ATOMPDBSelector())
        # read components
        names = ["1z5sA", "1z5sB", "1z5sC", "1z5sD"]
        fn_pdbs = [self.get_input_file_name(name + ".pdb") for name in names]
        components = [
            atom.read_pdb(fn, m, IMP.atom.ATOMPDBSelector()) for fn in fn_pdbs
        ]
        components_rbs = [atom.create_rigid_body(c) for c in components]

        # img
        R = alg.get_identity_rotation_3d()
        reg = em2d.RegistrationResult(R)
        img = em2d.Image()
        img.set_size(80, 80)
        srw = em2d.SpiderImageReaderWriter()
        resolution = 5
        pixel_size = 1.5
        options = em2d.ProjectingOptions(pixel_size, resolution)
        ls = core.get_leaves(prot)
        em2d.get_projection(img, ls, reg, options)
        # img.write("rbfit_test_image.spi",srw)
        # set restraint
        score_function = em2d.EM2DScore()
        rb_fit = em2d.RigidBodiesImageFitRestraint(score_function,
                                                   components_rbs, img)
        pp = em2d.ProjectingParameters(pixel_size, resolution)
        rb_fit.set_projecting_parameters(pp)
        # set the trivial case:
        n_masks = 1

        for rb in components_rbs:
            # set as the only possible orientation the one that the rigid
            # body already has
            rb_fit.set_orientations(rb, [
                rb.get_reference_frame().get_transformation_to().get_rotation(
                )
            ])
            self.assertEqual(rb_fit.get_number_of_masks(rb), n_masks,
                             "Incorrect number rigid body masks")

        # Calculate the positions of the rigid bodies respect to the centroid
        # of the entire molecule
        ls = core.get_leaves(prot)
        xyzs = core.XYZs(ls)
        centroid = core.get_centroid(xyzs)

        coords = [rb.get_coordinates() - centroid for rb in components_rbs]
        for rb, coord in zip(components_rbs, coords):
            rb.set_coordinates(coord)

        # Check that the value is a perfect registration
        m.add_restraint(rb_fit)
        score = rb_fit.evaluate(False)
        # print "score ...", score
        # It seems that projecting with the masks is slightly less accurate
        # I have to establish a tolerance of 0.03
        self.assertAlmostEqual(score,
                               0,
                               delta=0.03,
                               msg="Wrong value for the score %f " % (score))