def example3(): widgets = [Bar('>'), ' ', ETA(), ' ', ReverseBar('<')] pbar = ProgressBar(widgets=widgets, maxval=10000000).start() for i in range(1000000): # do something pbar.update(10 * i + 1) pbar.finish()
class CLIProgressBar(object): widgets = [' ', Bar(marker=RotatingMarker()), ' ', Percentage()] def __init__(self, size=100, label="", color=None, fd=sys.stdout): self.progress_bar = PB(widgets=[label] + self.widgets, maxval=size, fd=fd) self.progress = 0 def start(self, width='50%'): self.progress_bar.start() self.progress = 0 def increment(self, i=1): p = self.progress + i self.progress_bar.update(p) def update(self, progress): self.progress_bar.update(progress) def reset(self): self.progress_bar.start() self.progress = 0 def end(self): self.progress_bar.finish() def __call__(self, iterable): return self.progress_bar(iterable)
def example18(): widgets = [Percentage(), ' ', Bar(), ' ', ETA(), ' ', AdaptiveETA()] pbar = ProgressBar(widgets=widgets, maxval=500) pbar.start() for i in range(500): time.sleep(0.01 + (i < 100) * 0.01 + (i > 400) * 0.9) pbar.update(i + 1) pbar.finish()
def example1(): widgets = ['Test: ', Percentage(), ' ', Bar(marker=RotatingMarker()), ' ', ETA(), ' ', FileTransferSpeed()] pbar = ProgressBar(widgets=widgets, maxval=10000000).start() for i in range(1000000): # do something pbar.update(10 * i + 1) pbar.finish()
def example4(): widgets = ['Test: ', Percentage(), ' ', Bar(marker='0', left='[', right=']'), ' ', ETA(), ' ', FileTransferSpeed()] pbar = ProgressBar(widgets=widgets, maxval=500) pbar.start() for i in range(100, 500 + 1, 50): time.sleep(0.2) pbar.update(i) pbar.finish()
def optimize_strains(self, pathways, view, aerobic=True): """ Optimize targets for the identified pathways. The optimization will only run if the pathway can be optimized. Arguments --------- pathways: list A list of dictionaries to optimize ([Host, Model] -> PredictedPathways). view: object A view for multi, single os distributed processing. aerobic: bool If True, it will set `model.reactions.EX_o2_e.lower_bound` to 0. Returns ------- pandas.DataFrame A data frame with strain designs processed and ranked. """ opt_gene_runner = _OptGeneRunner(self.debug) differential_fva_runner = _DifferentialFVARunner(self.debug) strategies = [ (host, model, pathway, aerobic) for (host, model) in pathways for pathway in pathways[host, model] if pathway.needs_optimization(model, objective=model.biomass) ] print("Optimizing %i pathways" % len(strategies)) results = DataFrame(columns=[ "host", "model", "manipulations", "heterologous_pathway", "fitness", "yield", "product", "biomass", "method" ]) mapped_designs1 = view.map(opt_gene_runner, strategies) mapped_designs2 = view.map(differential_fva_runner, strategies) progress = ProgressBar( maxval=len(mapped_designs1) + len(mapped_designs2), widgets=["Processing solutions: ", Bar(), ETA()]) progress.start() results = self.build_results_data(mapped_designs1, strategies, results, progress) results = self.build_results_data(mapped_designs2, strategies, results, progress, offset=len(mapped_designs1)) progress.finish() return results
def example2(): class CrazyFileTransferSpeed(FileTransferSpeed): """It's bigger between 45 and 80 percent.""" def update(self, pbar): if 45 < pbar.percentage() < 80: return 'Bigger Now ' + FileTransferSpeed.update(self, pbar) else: return FileTransferSpeed.update(self, pbar) widgets = [CrazyFileTransferSpeed(), ' <<<', Bar(), '>>> ', Percentage(), ' ', ETA()] pbar = ProgressBar(widgets=widgets, maxval=10000000) # maybe do something pbar.start() for i in range(2000000): # do something pbar.update(5 * i + 1) pbar.finish()
def example0(): pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=300).start() for i in range(300): time.sleep(0.01) pbar.update(i + 1) pbar.finish()