Exemple #1
0
def LeeFilter(image, kernelLength, show=False):
    import numpy as np
    import cv2
    from ImageMedicalLib import changeFormat, info

    if image.dtype == 'uint8':
        image = changeFormat.uint2double(image)
    rect = cv2.selectROI(image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    c1, c2 = rect[0], rect[0] + rect[2]
    l1, l2 = rect[1], rect[0] + rect[3]
    stdRect = np.std(image[l1:l2, c1:c2])
    newImage = np.zeros(image.shape)
    w = np.zeros((kernelLength, kernelLength), dtype=int)
    w_center = int((w.shape[0]) / 2)
    for indexrow, frow in enumerate(image[:-(w_center * 2)]):
        for indexcolumn, fcolumn in enumerate(frow[:-(w_center * 2)]):
            maskLocal = image[indexrow:1 + indexrow + w_center * 2,
                              indexcolumn:1 + indexcolumn + w_center * 2]
            meanMask = np.mean(maskLocal + w)
            k = np.clip(1 - (stdRect / (0.001 + maskLocal.std())), 0, 1)
            newImage[indexrow + w_center,
                     indexcolumn + w_center] = meanMask + k * (
                         image[indexrow + w_center, indexcolumn + w_center] -
                         meanMask)
    if show:
        info.showImageStyle(
            1, 2, {
                'I1': changeFormat.im2uint8(image),
                'Imean': changeFormat.im2uint8(newImage)
            }, ['Original', 'Lee Filter'])
    return newImage
Exemple #2
0
def sobel(image):
    """
    Filtro Sobel
    
    INPUTS:
        image: imagem a ser filtrada
    OUTPUTS:
        gradient_sobel: gradiente de Sobel resultante das derivadas x e y
    """
    import numpy as np
    from ImageMedicalLib import changeFormat
    from scipy import ndimage
    wx = np.asarray([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
    wy = np.asarray([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
    if image.dtype == 'uint8':
        image = changeFormat.uint2double(image)
    image_norm = image
    dx = ndimage.convolve(image_norm, wx)
    dy = ndimage.convolve(image_norm, wy)
    gradient_sobel = np.sqrt(dx**2 + dy**2)
    return gradient_sobel
Exemple #3
0
def laplace(image):
    """
    Filtros Laplacianos
    
    INPUTS:
        image: imagem a ser filtrada
    OUTPUTS:
        dL1: Laplaciano resultante da máscara [[0,1,0],[1,-4,1],[0,1,0]]
        
        dL2: Laplaciano resultante da máscara [[1,1,1],[1,-8,1],[1,1,1]]
    """
    import numpy as np
    from ImageMedicalLib import changeFormat
    from scipy import ndimage
    L1 = np.asarray([[0, 1, 0], [1, -4, 1], [0, 1, 0]])
    L2 = np.asarray([[1, 1, 1], [1, -8, 1], [1, 1, 1]])
    if image.dtype == 'uint8':
        image = changeFormat.uint2double(image)
    image_norm = image
    dL1 = ndimage.convolve(image_norm, L1)
    dL2 = ndimage.convolve(image_norm, L2)
    return dL1, dL2
@author: Andre
"""

#%% Importando módulos
import numpy as np
import imageio
from ImageMedicalLib import changeFormat, info, filters
import cv2
import os

#%% 1 - Ultrassom bebe
cf = os.getcwd()  # current folder
I1_path = os.path.join(cf, 'ImagensAulas',
                       'Ultrassom.pgm')  # endereco da imagem
I1 = changeFormat.uint2double(imageio.imread(I1_path))

rect = cv2.selectROI(I1)  # selecionando região de interesse com openCV
# Selecionar a região e dar enter 2x
cv2.waitKey(0)
cv2.destroyAllWindows()
c1, c2 = rect[0], rect[0] + rect[2]  # coluna minima e coluna maxima
l1, l2 = rect[1], rect[0] + rect[3]  # linha minima e linha maxima

meanRect = np.mean(I1[l1:l2, c1:c2])
stdRect = np.std(I1[l1:l2, c1:c2])
#%% Filtro de Lee (essa demora)
image = I1
kernelLength = 7
newImage = np.zeros(image.shape)
w = np.zeros((kernelLength, kernelLength), dtype=int)
Exemple #5
0
#%% 8 - Maximo, minimo e media da imagem
maximum = I1.max()
minimum = I1.min()
meanI1 = int(I1.mean())

#%% 9 - Exibindo imagem
plt.figure()
plt.imshow(I1)
plt.set_cmap('gray')
plt.axis('off')
plt.title('Raio X Torax')
plt.colorbar()
plt.show()

#%% 10 - Convertendo para double
I1double = changeFormat.uint2double(I1)
newMax = I1double.max()
newMin = I1double.min()
newMean = I1double.mean()
newStd = I1double.std()
newMedian = np.median(I1double)

plt.figure()
plt.imshow(I1double)
plt.set_cmap('gray')
plt.axis('off')
plt.title('Raio X Torax double')
plt.colorbar()
plt.show()

Idouble50x50 = I1double[50, 50]
info.showImageStyle(1,
                    1, {'mamoConv': mamoConv}, ['Mamo Gaussian Filter'],
                    title='Mamo Gaussian Filter')

#%% Função mascara gaussiana
w_Gauss2D = filters.kernelGauss(10, 5, A=1)
info.showImageStyle(1, 1, {'w_Gauss2D': changeFormat.im2uint8(w_Gauss2D)},
                    ['w_Gauss2D'])

#%% Convolucao com mascara gaussiana gerada no item acima
mamoConv = ndimage.convolve(mamo, w_Gauss2D)
info.showImageStyle(1, 1, {'mamoConv': mamoConv}, ['mamoConv'])

#%% 4 -Afiamento de bordas
imri = imageio.imread(r'ImagensAulas\TransversalMRI2.pgm')
imri = changeFormat.uint2double(
    imri)  # Conversão para double para não dar ruim
mask = filters.kernelGauss(8, 3, A=1)
f_blur = ndimage.convolve(imri, mask)
g = imri - f_blur
f_sharpened = (imri + g).clip(0, 1)
images = {
    'imri': changeFormat.im2uint8(imri),
    'f_blur': changeFormat.im2uint8(f_blur),
    'f_sharpened': changeFormat.im2uint8(f_sharpened)
}
info.showImageStyle(1, 3, images, ['imri', 'f_blur', 'f_sharpened'])

#%% 5 - Gradientes x e y
dx = np.asarray([[1, -1]])
dy = np.asarray([[1], [-1]])
stent = imageio.imread(r'ImagensAulas\Stent.pgm')