def getPeaks(d, alg, hdr, fmt, mask, times, env, run, j): """Finds peaks within an event, and returns the event information, peaks found, and hits found Arguments: d -- psana.Detector() of this experiment's detector alg -- the algorithm used to find peaks hdr -- Title row for printed chart of peaks found fmt -- Locations of peaks found for printed chart mask -- the detector mask times -- all the events for this run env -- ds.env() run -- ds.runs().next(), the run information j -- this event's number """ evt = run.event(times[j]) try: nda = d.calib(evt) * mask except TypeError: nda = d.calib(evt) if (nda is not None): peaks = alg.peak_finder_v3r3(nda, rank=3, r0=3, dr=2, nsigm=5) numPeaksFound = len(peaks) alg = PA() thr = 20 numpix = alg.number_of_pix_above_thr(nda, thr) #totint = alg.intensity_of_pix_above_thr(nda, thr) return [evt, nda, peaks, numPeaksFound, numpix] else: return [None, None, None, None, None]
def __init__(self, parent, gateName, tofs, tofl, tofs_dict, tofl_dict): self.parent = parent self.gateName = gateName self.tofs = tofs self.tofl = tofl self.tofs_dict = tofs_dict self.tofl_dict = tofl_dict self.tofbin = self.parent.monitor_params['t']['bin'] print self.tofs_dict, self.tofl_dict self.tof_ind = (self.parent.TaxisM > self.tofs) & (self.parent.TaxisM < self.tofl) self.particle = self.gateName self.extractE = extractE self.alg = PyAlgos() self.alg.set_peak_selection_pars(npix_min=self.parent.npix_min, npix_max=self.parent.npix_max, amax_thr=self.parent.amax_thr, atot_thr=self.parent.atot_thr, son_min=self.parent.son_min) self.init_vars()
def __init__(self, source, monitor_params): super(Coin, self).__init__(map_func=self.process_data, reduce_func=self.reduce,save_func=self.save_data, source=source, monitor_params=monitor_params) import psana self.monitor_params = monitor_params self.init_params(monitor_params) self.e_cols = self.eimg_center_y - self.e_radius self.e_coll = self.eimg_center_y + self.e_radius+1 self.e_rows = self.eimg_center_x - self.e_radius self.e_rowl = self.eimg_center_x + self.e_radius+1 self.e_center_y = self.eimg_center_y self.e_center_x = self.eimg_center_x self.mask = np.ones([1024,1024]) self.mask[350:650, 350:650] = 0 self.mask[:, :350] = 0 #self.alg = PyAlgos(mask = self.mask) self.alg = PyAlgos() self.alg.set_peak_selection_pars(npix_min=self.npix_min, npix_max=self.npix_max, amax_thr=self.amax_thr, atot_thr=self.atot_thr, son_min=self.son_min) self.speed_rep_int = self.params_gen['speed_report_interval'] self.old_time = time.time() self.time = None print('Starting worker: {0}.'.format(self.mpi_rank)) sys.stdout.flush() return
def __init__(self, parent, gateName, tof1s, tof1l, tof2s, tof2l, tof3s, tof3l, thresh1_n3n1, thresh2_n3n1, thresh1_n3n2, thresh2_n3n2, ang_f): self.parent = parent self.gateName = gateName self.tof1s = tof1s self.tof1l = tof1l self.tof2s = tof2s self.tof2l = tof2l self.tof3s = tof3s self.tof3l = tof3l self.extractE = extractE self.PiPiCo_ind1 = (self.parent.TaxisM > self.tof1s) & (self.parent.TaxisM < self.tof1l) self.PiPiCo_ind2 = (self.parent.TaxisM > self.tof2s) & (self.parent.TaxisM < self.tof2l) self.PiPiCo_ind3 = (self.parent.TaxisM > self.tof3s) & (self.parent.TaxisM < self.tof3l) self.thresh1 = {} self.thresh2 = {} self.thresh1['n3n1'] = thresh1_n3n1 self.thresh1['n3n2'] = thresh1_n3n2 self.thresh2['n3n1'] = thresh2_n3n1 self.thresh2['n3n2'] = thresh2_n3n2 self.ang_f = ang_f self.cos_theta_f1 = np.cos(0.5 * self.ang_f * np.pi / 180) self.cos_theta_f2 = np.cos((90 - 0.5 * self.ang_f) * np.pi / 180) self.cos_theta_f3 = -np.cos((90 - 0.5 * self.ang_f) * np.pi / 180) self.cos_theta_f4 = -np.cos(0.5 * self.ang_f * np.pi / 180) self.particle1 = self.gateName[:2] self.particle2 = self.gateName[2:4] self.particle3 = self.gateName[4:6] self.alg = PyAlgos() self.alg.set_peak_selection_pars(npix_min=self.parent.npix_min, npix_max=self.parent.npix_max, amax_thr=self.parent.amax_thr, atot_thr=self.parent.atot_thr, son_min=self.parent.son_min) self.init_vars()
class PeakFinding(object): def __init__(self, parent = None): self.parent = parent self.d9 = Dock("Peak Finder", size=(1, 1)) ## Dock 9: Peak finder self.w10 = ParameterTree() self.d9.addWidget(self.w10) #self.w11 = pg.LayoutWidget() #self.generatePowderBtn = QtGui.QPushButton('Generate Powder') #self.launchBtn = QtGui.QPushButton('Launch peak finder') #self.w11.addWidget(self.launchBtn, row=0,col=0) #self.w11.addWidget(self.generatePowderBtn, row=0, col=0) #self.d9.addWidget(self.w11) self.userUpdate = None self.doingUpdate = False # Peak finding self.hitParam_grp = 'Peak finder' self.hitParam_showPeaks_str = 'Show peaks found' self.hitParam_algorithm_str = 'Algorithm' # algorithm 0 self.hitParam_algorithm0_str = 'None' # algorithm 1 self.hitParam_alg1_npix_min_str = 'npix_min' self.hitParam_alg1_npix_max_str = 'npix_max' self.hitParam_alg1_amax_thr_str = 'amax_thr' self.hitParam_alg1_atot_thr_str = 'atot_thr' self.hitParam_alg1_son_min_str = 'son_min' self.hitParam_algorithm1_str = 'Droplet' self.hitParam_alg1_thr_low_str = 'thr_low' self.hitParam_alg1_thr_high_str = 'thr_high' self.hitParam_alg1_rank_str = 'rank' self.hitParam_alg1_radius_str = 'radius' self.hitParam_alg1_dr_str = 'dr' # algorithm 2 self.hitParam_alg2_npix_min_str = 'npix_min' self.hitParam_alg2_npix_max_str = 'npix_max' self.hitParam_alg2_amax_thr_str = 'amax_thr' self.hitParam_alg2_atot_thr_str = 'atot_thr' self.hitParam_alg2_son_min_str = 'son_min' self.hitParam_algorithm2_str = 'FloodFill' self.hitParam_alg2_thr_str = 'thr' self.hitParam_alg2_r0_str = 'r0' self.hitParam_alg2_dr_str = 'dr' # algorithm 3 self.hitParam_alg3_npix_min_str = 'npix_min' self.hitParam_alg3_npix_max_str = 'npix_max' self.hitParam_alg3_amax_thr_str = 'amax_thr' self.hitParam_alg3_atot_thr_str = 'atot_thr' self.hitParam_alg3_son_min_str = 'son_min' self.hitParam_algorithm3_str = 'Ranker' self.hitParam_alg3_rank_str = 'rank' self.hitParam_alg3_r0_str = 'r0' self.hitParam_alg3_dr_str = 'dr' # algorithm 4 self.hitParam_alg4_npix_min_str = 'npix_min' self.hitParam_alg4_npix_max_str = 'npix_max' self.hitParam_alg4_amax_thr_str = 'amax_thr' self.hitParam_alg4_atot_thr_str = 'atot_thr' self.hitParam_alg4_son_min_str = 'son_min' self.hitParam_algorithm4_str = 'iDroplet' self.hitParam_alg4_thr_low_str = 'thr_low' self.hitParam_alg4_thr_high_str = 'thr_high' self.hitParam_alg4_rank_str = 'rank' self.hitParam_alg4_r0_str = 'radius' self.hitParam_alg4_dr_str = 'dr' self.hitParam_outDir_str = 'Output directory' self.hitParam_runs_str = 'Run(s)' self.hitParam_queue_str = 'queue' self.hitParam_cpu_str = 'CPUs' self.hitParam_psanaq_str = 'psanaq' self.hitParam_psnehq_str = 'psnehq' self.hitParam_psfehq_str = 'psfehq' self.hitParam_psnehprioq_str = 'psnehprioq' self.hitParam_psfehprioq_str = 'psfehprioq' self.hitParam_psnehhiprioq_str = 'psnehhiprioq' self.hitParam_psfehhiprioq_str = 'psfehhiprioq' self.hitParam_psdebugq_str = 'psdebugq' self.hitParam_noe_str = 'Number of events to process' self.hitParam_threshold_str = 'Indexable number of peaks' self.hitParam_launch_str = 'Launch peak finder' self.hitParam_extra_str = 'Extra parameters' self.save_minPeaks_str = 'Minimum number of peaks' self.save_maxPeaks_str = 'Maximum number of peaks' self.save_minRes_str = 'Minimum resolution (pixels)' self.save_sample_str = 'Sample name' self.showPeaks = True self.peaks = None self.numPeaksFound = 0 self.algorithm = 0 self.algInitDone = False self.peaksMaxRes = 0 self.classify = False self.hitParam_alg1_npix_min = 2. self.hitParam_alg1_npix_max = 20. self.hitParam_alg1_amax_thr = 0. self.hitParam_alg1_atot_thr = 1000. self.hitParam_alg1_son_min = 7. self.hitParam_alg1_thr_low = 250. self.hitParam_alg1_thr_high = 600. self.hitParam_alg1_rank = 2 self.hitParam_alg1_radius = 2 self.hitParam_alg1_dr = 1 # self.hitParam_alg2_npix_min = 1. # self.hitParam_alg2_npix_max = 5000. # self.hitParam_alg2_amax_thr = 1. # self.hitParam_alg2_atot_thr = 1. # self.hitParam_alg2_son_min = 1. # self.hitParam_alg2_thr = 10. # self.hitParam_alg2_r0 = 1. # self.hitParam_alg2_dr = 0.05 # self.hitParam_alg3_npix_min = 5. # self.hitParam_alg3_npix_max = 5000. # self.hitParam_alg3_amax_thr = 0. # self.hitParam_alg3_atot_thr = 0. # self.hitParam_alg3_son_min = 4. # self.hitParam_alg3_rank = 3 # self.hitParam_alg3_r0 = 5. # self.hitParam_alg3_dr = 0.05 # self.hitParam_alg4_npix_min = 1. # self.hitParam_alg4_npix_max = 45. # self.hitParam_alg4_amax_thr = 800. # self.hitParam_alg4_atot_thr = 0 # self.hitParam_alg4_son_min = 7. # self.hitParam_alg4_thr_low = 200. # self.hitParam_alg4_thr_high = self.hitParam_alg1_thr_high # self.hitParam_alg4_rank = 3 # self.hitParam_alg4_r0 = 2 # self.hitParam_alg4_dr = 1 self.hitParam_outDir = self.parent.psocakeDir self.hitParam_outDir_overridden = False self.hitParam_runs = '' self.hitParam_queue = self.hitParam_psanaq_str self.hitParam_cpus = 24 self.hitParam_noe = -1 self.hitParam_threshold = 15 # usually crystals with less than 15 peaks are not indexable self.minPeaks = 15 self.maxPeaks = 2048 self.minRes = -1 self.sample = 'sample' self.profile = 0 self.hitParam_extra = '' self.params = [ {'name': self.hitParam_grp, 'type': 'group', 'children': [ {'name': self.hitParam_showPeaks_str, 'type': 'bool', 'value': self.showPeaks, 'tip': "Show peaks found shot-to-shot"}, {'name': self.hitParam_algorithm_str, 'type': 'list', 'values': {self.hitParam_algorithm1_str: 1, self.hitParam_algorithm0_str: 0}, 'value': self.algorithm}, {'name': self.hitParam_algorithm1_str, 'visible': True, 'expanded': False, 'type': 'str', 'value': "", 'readonly': True, 'children': [ {'name': self.hitParam_alg1_npix_min_str, 'type': 'float', 'value': self.hitParam_alg1_npix_min, 'tip': "Only keep the peak if number of pixels above thr_low is above this value"}, {'name': self.hitParam_alg1_npix_max_str, 'type': 'float', 'value': self.hitParam_alg1_npix_max, 'tip': "Only keep the peak if number of pixels above thr_low is below this value"}, {'name': self.hitParam_alg1_amax_thr_str, 'type': 'float', 'value': self.hitParam_alg1_amax_thr, 'tip': "Only keep the peak if max value is above this value"}, {'name': self.hitParam_alg1_atot_thr_str, 'type': 'float', 'value': self.hitParam_alg1_atot_thr, 'tip': "Only keep the peak if integral inside region of interest is above this value"}, {'name': self.hitParam_alg1_son_min_str, 'type': 'float', 'value': self.hitParam_alg1_son_min, 'tip': "Only keep the peak if signal-over-noise is above this value"}, {'name': self.hitParam_alg1_thr_low_str, 'type': 'float', 'value': self.hitParam_alg1_thr_low, 'tip': "Grow a seed peak if above this value"}, {'name': self.hitParam_alg1_thr_high_str, 'type': 'float', 'value': self.hitParam_alg1_thr_high, 'tip': "Start a seed peak if above this value"}, {'name': self.hitParam_alg1_rank_str, 'type': 'int', 'value': self.hitParam_alg1_rank, 'tip': "region of integration is a square, (2r+1)x(2r+1)"}, {'name': self.hitParam_alg1_radius_str, 'type': 'int', 'value': self.hitParam_alg1_radius, 'tip': "region inside the region of interest"}, {'name': self.hitParam_alg1_dr_str, 'type': 'float', 'value': self.hitParam_alg1_dr, 'tip': "background region outside the region of interest"}, ]}, {'name': self.save_minPeaks_str, 'type': 'int', 'value': self.minPeaks, 'tip': "Index only if there are more Bragg peaks found"}, {'name': self.save_maxPeaks_str, 'type': 'int', 'value': self.maxPeaks, 'tip': "Index only if there are less Bragg peaks found"}, {'name': self.save_minRes_str, 'type': 'int', 'value': self.minRes, 'tip': "Index only if Bragg peak resolution is at least this"}, {'name': self.save_sample_str, 'type': 'str', 'value': self.sample, 'tip': "Sample name saved inside cxi"}, {'name': self.hitParam_outDir_str, 'type': 'str', 'value': self.hitParam_outDir}, {'name': self.hitParam_runs_str, 'type': 'str', 'value': self.hitParam_runs}, {'name': self.hitParam_queue_str, 'type': 'list', 'values': {self.hitParam_psfehhiprioq_str: 'psfehhiprioq', self.hitParam_psnehhiprioq_str: 'psnehhiprioq', self.hitParam_psfehprioq_str: 'psfehprioq', self.hitParam_psnehprioq_str: 'psnehprioq', self.hitParam_psfehq_str: 'psfehq', self.hitParam_psnehq_str: 'psnehq', self.hitParam_psanaq_str: 'psanaq', self.hitParam_psdebugq_str: 'psdebugq'}, 'value': self.hitParam_queue, 'tip': "Choose queue"}, {'name': self.hitParam_cpu_str, 'type': 'int', 'value': self.hitParam_cpus}, {'name': self.hitParam_noe_str, 'type': 'int', 'value': self.hitParam_noe, 'tip': "number of events to process, default=-1 means process all events"}, {'name': self.hitParam_extra_str, 'type': 'str', 'value': self.hitParam_extra, 'tip': "Extra peak finding flags"}, {'name': self.hitParam_launch_str, 'type': 'action'}, ]}, ] self.p3 = Parameter.create(name='paramsPeakFinder', type='group', \ children=self.params, expanded=True) self.w10.setParameters(self.p3, showTop=False) self.p3.sigTreeStateChanged.connect(self.change) #self.parent.connect(self.launchBtn, QtCore.SIGNAL("clicked()"), self.findPeaks) def digestRunList(self, runList): runsToDo = [] if not runList: print "Run(s) is empty. Please type in the run number(s)." return runsToDo runLists = str(runList).split(",") for list in runLists: temp = list.split(":") if len(temp) == 2: for i in np.arange(int(temp[0]),int(temp[1])+1): runsToDo.append(i) elif len(temp) == 1: runsToDo.append(int(temp[0])) return runsToDo def updateParam(self): if self.userUpdate is None: if self.parent.psocakeRunDir is not None: peakParamFname = self.parent.psocakeRunDir + '/peakParam.json' if os.path.exists(peakParamFname): with open(peakParamFname) as infile: d = json.load(infile) if d[self.hitParam_algorithm_str] == 1: # Update variables try: self.hitParam_alg1_npix_min = d[self.hitParam_alg1_npix_min_str] self.hitParam_alg1_npix_max = d[self.hitParam_alg1_npix_max_str] self.hitParam_alg1_amax_thr = d[self.hitParam_alg1_amax_thr_str] self.hitParam_alg1_atot_thr = d[self.hitParam_alg1_atot_thr_str] self.hitParam_alg1_son_min = d[self.hitParam_alg1_son_min_str] self.hitParam_alg1_thr_low = d[self.hitParam_alg1_thr_low_str] self.hitParam_alg1_thr_high = d[self.hitParam_alg1_thr_high_str] self.hitParam_alg1_rank = int(d[self.hitParam_alg1_rank_str]) self.hitParam_alg1_radius = int(d[self.hitParam_alg1_radius_str]) self.hitParam_alg1_dr = d[self.hitParam_alg1_dr_str] # Update GUI self.doingUpdate = True #self.p3.param(self.hitParam_grp, self.hitParam_algorithm_str).setValue(self.algorithm) self.p3.param(self.hitParam_grp, self.hitParam_algorithm1_str, self.hitParam_alg1_npix_min_str).setValue( self.hitParam_alg1_npix_min) self.p3.param(self.hitParam_grp, self.hitParam_algorithm1_str, self.hitParam_alg1_npix_max_str).setValue( self.hitParam_alg1_npix_max) self.p3.param(self.hitParam_grp, self.hitParam_algorithm1_str, self.hitParam_alg1_amax_thr_str).setValue( self.hitParam_alg1_amax_thr) self.p3.param(self.hitParam_grp, self.hitParam_algorithm1_str, self.hitParam_alg1_atot_thr_str).setValue( self.hitParam_alg1_atot_thr) self.p3.param(self.hitParam_grp, self.hitParam_algorithm1_str, self.hitParam_alg1_son_min_str).setValue( self.hitParam_alg1_son_min) self.p3.param(self.hitParam_grp, self.hitParam_algorithm1_str, self.hitParam_alg1_thr_low_str).setValue( self.hitParam_alg1_thr_low) self.p3.param(self.hitParam_grp, self.hitParam_algorithm1_str, self.hitParam_alg1_thr_high_str).setValue( self.hitParam_alg1_thr_high) self.p3.param(self.hitParam_grp, self.hitParam_algorithm1_str, self.hitParam_alg1_rank_str).setValue( self.hitParam_alg1_rank) self.p3.param(self.hitParam_grp, self.hitParam_algorithm1_str, self.hitParam_alg1_radius_str).setValue( self.hitParam_alg1_radius) self.doingUpdate = False self.p3.param(self.hitParam_grp, self.hitParam_algorithm1_str, self.hitParam_alg1_dr_str).setValue( self.hitParam_alg1_dr) except: pass def writeStatus(self, fname, d): json.dump(d, open(fname, 'w')) # Launch peak finding def findPeaks(self): self.parent.thread.append(LaunchPeakFinder.LaunchPeakFinder(self.parent)) # send parent parameters with self self.parent.thread[self.parent.threadCounter].launch(self.parent.experimentName, self.parent.detInfo) self.parent.threadCounter+=1 # Save peak finding parameters runsToDo = self.digestRunList(self.hitParam_runs) for run in runsToDo: peakParamFname = self.parent.psocakeDir+'/r'+str(run).zfill(4)+'/peakParam.json' d = {self.hitParam_algorithm_str: self.algorithm, self.hitParam_alg1_npix_min_str: self.hitParam_alg1_npix_min, self.hitParam_alg1_npix_max_str: self.hitParam_alg1_npix_max, self.hitParam_alg1_amax_thr_str: self.hitParam_alg1_amax_thr, self.hitParam_alg1_atot_thr_str: self.hitParam_alg1_atot_thr, self.hitParam_alg1_son_min_str: self.hitParam_alg1_son_min, self.hitParam_alg1_thr_low_str: self.hitParam_alg1_thr_low, self.hitParam_alg1_thr_high_str: self.hitParam_alg1_thr_high, self.hitParam_alg1_rank_str: self.hitParam_alg1_rank, self.hitParam_alg1_radius_str: self.hitParam_alg1_radius, self.hitParam_alg1_dr_str: self.hitParam_alg1_dr} self.writeStatus(peakParamFname, d) # If anything changes in the parameter tree, print a message def change(self, panel, changes): for param, change, data in changes: path = panel.childPath(param) if self.parent.args.v >= 1: print(' path: %s' % path) print(' change: %s' % change) print(' data: %s' % str(data)) print(' ----------') self.paramUpdate(path, change, data) ############################## # Mandatory parameter update # ############################## def paramUpdate(self, path, change, data): if path[0] == self.hitParam_grp: if path[1] == self.hitParam_algorithm_str: self.algInitDone = False self.updateAlgorithm(data) elif path[1] == self.hitParam_showPeaks_str: self.showPeaks = data self.drawPeaks() elif path[1] == self.hitParam_outDir_str: self.hitParam_outDir = data self.hitParam_outDir_overridden = True elif path[1] == self.hitParam_runs_str: self.hitParam_runs = data elif path[1] == self.hitParam_queue_str: self.hitParam_queue = data elif path[1] == self.hitParam_cpu_str: self.hitParam_cpus = data elif path[1] == self.hitParam_noe_str: self.hitParam_noe = data elif path[1] == self.hitParam_threshold_str: self.hitParam_threshold = data elif path[1] == self.hitParam_launch_str: self.findPeaks() elif path[1] == self.save_minPeaks_str: self.minPeaks = data elif path[1] == self.save_maxPeaks_str: self.maxPeaks = data elif path[1] == self.save_minRes_str: self.minRes = data elif path[1] == self.save_sample_str: self.sample = data elif path[1] == self.hitParam_extra_str: self.hitParam_extra = data elif path[2] == self.hitParam_alg1_npix_min_str and path[1] == self.hitParam_algorithm1_str: self.hitParam_alg1_npix_min = data self.algInitDone = False self.userUpdate = True if self.showPeaks and self.doingUpdate is False: self.updateClassification() elif path[2] == self.hitParam_alg1_npix_max_str and path[1] == self.hitParam_algorithm1_str: self.hitParam_alg1_npix_max = data self.algInitDone = False self.userUpdate = True if self.showPeaks and self.doingUpdate is False: self.updateClassification() elif path[2] == self.hitParam_alg1_amax_thr_str and path[1] == self.hitParam_algorithm1_str: self.hitParam_alg1_amax_thr = data self.algInitDone = False self.userUpdate = True if self.showPeaks and self.doingUpdate is False: self.updateClassification() elif path[2] == self.hitParam_alg1_atot_thr_str and path[1] == self.hitParam_algorithm1_str: self.hitParam_alg1_atot_thr = data self.algInitDone = False self.userUpdate = True if self.showPeaks and self.doingUpdate is False: self.updateClassification() elif path[2] == self.hitParam_alg1_son_min_str and path[1] == self.hitParam_algorithm1_str: self.hitParam_alg1_son_min = data self.algInitDone = False self.userUpdate = True if self.showPeaks and self.doingUpdate is False: self.updateClassification() elif path[2] == self.hitParam_alg1_thr_low_str and path[1] == self.hitParam_algorithm1_str: self.hitParam_alg1_thr_low = data self.algInitDone = False self.userUpdate = True if self.showPeaks and self.doingUpdate is False: self.updateClassification() elif path[2] == self.hitParam_alg1_thr_high_str and path[1] == self.hitParam_algorithm1_str: self.hitParam_alg1_thr_high = data self.algInitDone = False self.userUpdate = True if self.showPeaks and self.doingUpdate is False: self.updateClassification() elif path[2] == self.hitParam_alg1_rank_str and path[1] == self.hitParam_algorithm1_str: self.hitParam_alg1_rank = data self.algInitDone = False self.userUpdate = True if self.showPeaks and self.doingUpdate is False: self.updateClassification() elif path[2] == self.hitParam_alg1_radius_str and path[1] == self.hitParam_algorithm1_str: self.hitParam_alg1_radius = data self.algInitDone = False self.userUpdate = True if self.showPeaks and self.doingUpdate is False: self.updateClassification() elif path[2] == self.hitParam_alg1_dr_str and path[1] == self.hitParam_algorithm1_str: self.hitParam_alg1_dr = data self.algInitDone = False self.userUpdate = True if self.showPeaks and self.doingUpdate is False: self.updateClassification() def updateAlgorithm(self, data): self.algorithm = data self.algInitDone = False self.updateClassification() if self.parent.args.v >= 1: print "##### Done updateAlgorithm: ", self.algorithm def saveCheetahFormat(self, arg): if arg == 'lcls': if 'cspad' in self.parent.detInfo.lower() and 'cxi' in self.parent.experimentName: dim0 = 8 * 185 dim1 = 4 * 388 elif 'rayonix' in self.parent.detInfo.lower() and 'mfx' in self.parent.experimentName: dim0 = 1920 #FIXME: rayonix can be binned dim1 = 1920 elif 'rayonix' in self.parent.detInfo.lower() and 'xpp' in self.parent.experimentName: dim0 = 1920 #FIXME: rayonix can be binned dim1 = 1920 else: dim0 = 0 dim1 = 0 if dim0 > 0: maxNumPeaks = 2048 if self.parent.index.hiddenCXI is not None: myHdf5 = h5py.File(self.parent.index.hiddenCXI, 'w') grpName = "/entry_1/result_1" dset_nPeaks = "/nPeaks" dset_posX = "/peakXPosRaw" dset_posY = "/peakYPosRaw" dset_atot = "/peakTotalIntensity" if grpName in myHdf5: del myHdf5[grpName] grp = myHdf5.create_group(grpName) myHdf5.create_dataset(grpName + dset_nPeaks, (1,), dtype='int') myHdf5.create_dataset(grpName + dset_posX, (1, maxNumPeaks), dtype='float32', chunks=(1, maxNumPeaks)) myHdf5.create_dataset(grpName + dset_posY, (1, maxNumPeaks), dtype='float32', chunks=(1, maxNumPeaks)) myHdf5.create_dataset(grpName + dset_atot, (1, maxNumPeaks), dtype='float32', chunks=(1, maxNumPeaks)) myHdf5.create_dataset("/LCLS/detector_1/EncoderValue", (1,), dtype=float) myHdf5.create_dataset("/LCLS/photon_energy_eV", (1,), dtype=float) dset = myHdf5.create_dataset("/entry_1/data_1/data", (1, dim0, dim1), dtype=float) # Convert calib image to cheetah image img = np.zeros((dim0, dim1)) counter = 0 if 'cspad' in self.parent.detInfo.lower() and 'cxi' in self.parent.experimentName: for quad in range(4): for seg in range(8): img[seg * 185:(seg + 1) * 185, quad * 388:(quad + 1) * 388] = self.parent.calib[counter, :, :] counter += 1 elif 'rayonix' in self.parent.detInfo.lower() and 'mfx' in self.parent.experimentName: img = self.parent.calib[:, :] # psana format elif 'rayonix' in self.parent.detInfo.lower() and 'xpp' in self.parent.experimentName: img = self.parent.calib[:, :] # psana format else: print "saveCheetahFormat not implemented" peaks = self.peaks.copy() nPeaks = peaks.shape[0] if nPeaks > maxNumPeaks: peaks = peaks[:maxNumPeaks] nPeaks = maxNumPeaks for i, peak in enumerate(peaks): seg, row, col, npix, amax, atot, rcent, ccent, rsigma, csigma, rmin, rmax, cmin, cmax, bkgd, rms, son = peak[0:17] if 'cspad' in self.parent.detInfo.lower() and 'cxi' in self.parent.experimentName: cheetahRow, cheetahCol = self.convert_peaks_to_cheetah(seg, row, col) myHdf5[grpName + dset_posX][0, i] = cheetahCol myHdf5[grpName + dset_posY][0, i] = cheetahRow myHdf5[grpName + dset_atot][0, i] = atot elif 'rayonix' in self.parent.detInfo.lower() and 'mfx' in self.parent.experimentName: myHdf5[grpName + dset_posX][0, i] = col myHdf5[grpName + dset_posY][0, i] = row myHdf5[grpName + dset_atot][0, i] = atot elif 'rayonix' in self.parent.detInfo.lower() and 'xpp' in self.parent.experimentName: myHdf5[grpName + dset_posX][0, i] = col myHdf5[grpName + dset_posY][0, i] = row myHdf5[grpName + dset_atot][0, i] = atot myHdf5[grpName + dset_nPeaks][0] = nPeaks if self.parent.args.v >= 1: print "hiddenCXI clen (mm): ", self.parent.clen * 1000. myHdf5["/LCLS/detector_1/EncoderValue"][0] = self.parent.clen * 1000. # mm myHdf5["/LCLS/photon_energy_eV"][0] = self.parent.photonEnergy dset[0, :, :] = img myHdf5.close() def updateClassification(self): if self.parent.calib is not None: if self.parent.mk.streakMaskOn: self.parent.mk.initMask() self.parent.mk.streakMask = self.parent.mk.StreakMask.getStreakMaskCalib(self.parent.evt) if self.parent.mk.streakMask is None: self.parent.mk.streakMaskAssem = None else: self.parent.mk.streakMaskAssem = self.parent.det.image(self.parent.evt, self.parent.mk.streakMask) self.algInitDone = False self.parent.mk.displayMask() # update combined mask self.parent.mk.combinedMask = np.ones_like(self.parent.calib) if self.parent.mk.streakMask is not None and self.parent.mk.streakMaskOn is True: self.parent.mk.combinedMask *= self.parent.mk.streakMask if self.parent.mk.userMask is not None and self.parent.mk.userMaskOn is True: self.parent.mk.combinedMask *= self.parent.mk.userMask if self.parent.mk.psanaMask is not None and self.parent.mk.psanaMaskOn is True: self.parent.mk.combinedMask *= self.parent.mk.psanaMask # Peak output (0-16): # 0 seg # 1 row # 2 col # 3 npix: no. of pixels in the ROI intensities above threshold # 4 amp_max: max intensity # 5 amp_tot: sum of intensities # 6,7: row_cgrav: center of mass # 8,9: row_sigma # 10,11,12,13: minimum bounding box # 14: background # 15: noise # 16: signal over noise if self.algorithm == 0: # No peak algorithm self.peaks = None self.drawPeaks() else: # Only initialize the hit finder algorithm once if self.algInitDone is False: self.windows = None self.alg = [] self.alg = PyAlgos(windows=self.windows, mask=self.parent.mk.combinedMask, pbits=0) # set peak-selector parameters: if self.algorithm == 1: self.alg.set_peak_selection_pars(npix_min=self.hitParam_alg1_npix_min, npix_max=self.hitParam_alg1_npix_max, \ amax_thr=self.hitParam_alg1_amax_thr, atot_thr=self.hitParam_alg1_atot_thr, \ son_min=self.hitParam_alg1_son_min) elif self.algorithm == 2: self.alg.set_peak_selection_pars(npix_min=self.hitParam_alg2_npix_min, npix_max=self.hitParam_alg2_npix_max, \ amax_thr=self.hitParam_alg2_amax_thr, atot_thr=self.hitParam_alg2_atot_thr, \ son_min=self.hitParam_alg2_son_min) elif self.algorithm == 3: self.alg.set_peak_selection_pars(npix_min=self.hitParam_alg3_npix_min, npix_max=self.hitParam_alg3_npix_max, \ amax_thr=self.hitParam_alg3_amax_thr, atot_thr=self.hitParam_alg3_atot_thr, \ son_min=self.hitParam_alg3_son_min) elif self.algorithm == 4: self.alg.set_peak_selection_pars(npix_min=self.hitParam_alg4_npix_min, npix_max=self.hitParam_alg4_npix_max, \ amax_thr=self.hitParam_alg4_amax_thr, atot_thr=self.hitParam_alg4_atot_thr, \ son_min=self.hitParam_alg4_son_min) self.algInitDone = True self.parent.calib = self.parent.calib * 1.0 # Neccessary when int is returned if self.algorithm == 1: # v1 - aka Droplet Finder - two-threshold peak-finding algorithm in restricted region # around pixel with maximal intensity. self.peakRadius = int(self.hitParam_alg1_radius) self.peaks = self.alg.peak_finder_v4r2(self.parent.calib, thr_low=self.hitParam_alg1_thr_low, thr_high=self.hitParam_alg1_thr_high, rank=int(self.hitParam_alg1_rank), r0=self.peakRadius, dr=self.hitParam_alg1_dr) elif self.algorithm == 2: # v2 - define peaks for regions of connected pixels above threshold self.peakRadius = int(self.hitParam_alg2_r0) self.peaks = self.alg.peak_finder_v2(self.parent.calib, thr=self.hitParam_alg2_thr, r0=self.peakRadius, dr=self.hitParam_alg2_dr) elif self.algorithm == 3: self.peakRadius = int(self.hitParam_alg3_r0) self.peaks = self.alg.peak_finder_v3(self.parent.calib, rank=self.hitParam_alg3_rank, r0=self.peakRadius, dr=self.hitParam_alg3_dr) elif self.algorithm == 4: # v4 - aka Droplet Finder - the same as v1, but uses rank and r0 parameters in stead of common radius. self.peakRadius = int(self.hitParam_alg4_r0) self.peaks = self.alg.peak_finder_v4(self.parent.calib, thr_low=self.hitParam_alg4_thr_low, thr_high=self.hitParam_alg4_thr_high, rank=self.hitParam_alg4_rank, r0=self.peakRadius, dr=self.hitParam_alg4_dr) self.numPeaksFound = self.peaks.shape[0] if self.parent.args.v >= 1: print "Num peaks found: ", self.numPeaksFound, self.peaks.shape # update clen self.parent.geom.updateClen('lcls') self.parent.index.clearIndexedPeaks() # Save image and peaks in cheetah cxi file self.saveCheetahFormat('lcls') if self.parent.index.showIndexedPeaks: self.parent.index.updateIndex() self.drawPeaks() if self.parent.args.v >= 1: print "Done updateClassification" def convert_peaks_to_cheetah(self, s, r, c) : """Converts seg, row, col assuming (32,185,388) to cheetah 2-d table row and col (8*185, 4*388) """ segs, rows, cols = (32,185,388) row2d = (int(s)%8) * rows + int(r) # where s%8 is a segment in quad number [0,7] col2d = (int(s)/8) * cols + int(c) # where s/8 is a quad number [0,3] return row2d, col2d def getMaxRes(self, posX, posY, centerX, centerY): maxRes = np.max(np.sqrt((posX-centerX)**2 + (posY-centerY)**2)) if self.parent.args.v >= 1: print "maxRes: ", maxRes return maxRes # in pixels def drawPeaks(self): self.parent.img.clearPeakMessage() if self.showPeaks: if self.peaks is not None and self.numPeaksFound > 0: self.ix = self.parent.det.indexes_x(self.parent.evt) self.iy = self.parent.det.indexes_y(self.parent.evt) if self.ix is None: (_, dim0, dim1) = self.parent.calib.shape self.iy = np.tile(np.arange(dim0),[dim1, 1]) self.ix = np.transpose(self.iy) self.iX = np.array(self.ix, dtype=np.int64) self.iY = np.array(self.iy, dtype=np.int64) if len(self.iX.shape)==2: self.iX = np.expand_dims(self.iX,axis=0) self.iY = np.expand_dims(self.iY,axis=0) cenX = self.iX[np.array(self.peaks[:,0],dtype=np.int64),np.array(self.peaks[:,1],dtype=np.int64),np.array(self.peaks[:,2],dtype=np.int64)] + 0.5 cenY = self.iY[np.array(self.peaks[:,0],dtype=np.int64),np.array(self.peaks[:,1],dtype=np.int64),np.array(self.peaks[:,2],dtype=np.int64)] + 0.5 self.peaksMaxRes = self.getMaxRes(cenX, cenY, self.parent.cx, self.parent.cy) diameter = self.peakRadius*2+1 self.parent.img.peak_feature.setData(cenX, cenY, symbol='s', \ size=diameter, brush=(255,255,255,0), \ pen=pg.mkPen({'color': "c", 'width': 4}), pxMode=False) #FF0 # Write number of peaks found xMargin = 5 # pixels yMargin = 0 # pixels maxX = np.max(self.ix) + xMargin maxY = np.max(self.iy) - yMargin myMessage = '<div style="text-align: center"><span style="color: cyan; font-size: 12pt;">Peaks=' + \ str(self.numPeaksFound) + ' <br>Res=' + str(int(self.peaksMaxRes)) + '<br></span></div>' self.parent.img.peak_text = pg.TextItem(html=myMessage, anchor=(0, 0)) self.parent.img.w1.getView().addItem(self.parent.img.peak_text) self.parent.img.peak_text.setPos(maxX, maxY) else: self.parent.img.peak_feature.setData([], [], pxMode=False) self.parent.img.peak_text = pg.TextItem(html='', anchor=(0, 0)) self.parent.img.w1.getView().addItem(self.parent.img.peak_text) self.parent.img.peak_text.setPos(0,0) else: self.parent.img.peak_feature.setData([], [], pxMode=False) if self.parent.args.v >= 1: print "Done updatePeaks"
class TofGate(): def __init__(self, parent, gateName, tofs, tofl): self.parent = parent self.gateName = gateName self.tofs = tofs self.tofl = tofl self.tofbin = self.parent.monitor_params['t']['bin'] self.tof_ind = (self.parent.TaxisM>self.tofs) & (self.parent.TaxisM<self.tofl) self.particle = self.gateName self.extractE = extractE self.alg = PyAlgos() self.alg.set_peak_selection_pars(npix_min=self.parent.npix_min, npix_max=self.parent.npix_max, amax_thr=self.parent.amax_thr, atot_thr=self.parent.atot_thr, son_min=self.parent.son_min) self.init_vars() def init_vars(self): self.num_events = 0 self.P = 0 self.temp_irun = -1 self.tempXef1 = [] self.tempYef1 = [] self.tempXef2 = [] self.tempYef2 = [] self.tempErf1 = [] self.tempErf2 = [] self.hists_tof = {} self.hists_tof_all = {} for hist_name in self.parent.hist_names_tof: x_name = self.parent.monitor_params[hist_name]['x'] x_binnum = self.parent.vars_binnum[x_name] if 'y' in self.parent.monitor_params[hist_name].keys(): y_name = self.parent.monitor_params[hist_name]['y'] y_binnum = self.parent.vars_binnum[y_name] if 'z' in self.parent.monitor_params[hist_name].keys(): z_name = self.parent.monitor_params[hist_name]['z'] z_binnum = self.parent.vars_binnum[z_name] self.hists_tof[hist_name] = np.zeros([x_binnum-1, y_binnum-1, z_binnum-1]) if self.parent.role == 'master': self.hists_tof_all[hist_name] = np.zeros([x_binnum-1, y_binnum-1, z_binnum-1]) else: self.hists_tof_all[hist_name] = None else: self.hists_tof[hist_name] = np.zeros([x_binnum-1, y_binnum-1]) if self.parent.role == 'master': self.hists_tof_all[hist_name] = np.zeros([x_binnum-1, y_binnum-1]) else: self.hists_tof_all[hist_name] = None else: self.hists_tof[hist_name] = np.zeros([x_binnum-1]) if self.parent.role == 'master': self.hists_tof_all[hist_name] = np.zeros([x_binnum-1]) else: self.hists_tof_all[hist_name] = None def update_electron(self, eAind, eRind, eXind, eYind): # self.eA[eAind,0] += 1 # self.eR[eRind,0] += 1 self.hists_tof['ex_ey_tg'][eXind, eYind] += 1 # self.eAR[eAind, eRind] += 1 def update_ion(self, Tofind, Xind, Yind, Tofele, Xele, Yele): if (self.parent.TaxisM[Tofind] > self.tofs and self.parent.TaxisM[Tofind] < self.tofl): self.P += 1 self.hists_tof['x_y_tg'][Xind, Yind] += 1 # self.XT[Tofind, Xind] += 1 # self.YT[Tofind, Yind] += 1 def is_coin(self): return self.P > 0 def update_shotinfo(self, pho_ind, pls_ind): self.hists_tof['pho_pls_eng_tg'][pho_ind, pls_ind] += 1 self.num_events += 1 temp_num_particles_ind = next((tNP_ind for tNP_ind, tNP_ele in enumerate(self.parent.vars_axis['num_particles']) if tNP_ele > self.P),0)-1 if temp_num_particles_ind != -1: self.hists_tof['num_particles_tg'][temp_num_particles_ind] += 1 self.tempXef1, self.tempYef1,self.tempErf1,self.pho_ind_f1,self.pls_ind_f1 = self.processDataE(self.parent.irun,self.parent.ievt-1) self.tempXef2, self.tempYef2,self.tempErf2,self.pho_ind_f2,self.pls_ind_f2 = self.processDataE(self.parent.irun,self.parent.ievt+1) if len(self.tempXef1) > 0: for itemp in range(len(self.tempXef1)): self.hists_tof['ex_ey_tg_fls1'][self.tempXef1[itemp],self.tempYef1[itemp]] += 1 self.hists_tof['pho_pls_eng_tg_fls1'][self.pho_ind_f1, self.pls_ind_f1] += 1 if len(self.tempXef2) > 0: for itemp in range(len(self.tempXef2)): self.hists_tof['ex_ey_tg_fls2'][self.tempXef2[itemp],self.tempYef2[itemp]] += 1 self.hists_tof['pho_pls_eng_tg_fls2'][self.pho_ind_f2, self.pls_ind_f2] += 1 def reset_coin_var(self): self.P = 0 def save_var(self, h5f): grp = h5f.create_group('TofGate_'+self.gateName) grp.create_dataset('gateInfo_tofs_tofl_tofbin', data=np.array([self.tofs,self.tofl,self.tofbin])) for histname in self.parent.hist_names_tof: try: grp.create_dataset(histname,data = self.hists_tof_all[histname]) except Exception as e: print(histname+' failed to be saved.') print(e) def reduce(self): for histname in self.parent.hist_names_tof: try: self.time_a = time.time() MPI.COMM_WORLD.Reduce(self.hists_tof[histname],self.hists_tof_all[histname]) self.time_b = time.time() print(histname+' reduced by '+'Rank {0} in {1:.2f} seconds'.format(self.parent.mpi_rank,self.time_b - self.time_a)) except Exception as e: print(histname+' failed to be redueced by '+str(self.parent.mpi_rank)) print(e) def processDataE(self,irun,ievt): if self.temp_irun != irun: self.psana_source = psana.DataSource(self.parent.source) for ii, rr in enumerate(self.psana_source.runs()): if ii==irun: self.temp_irun = irun self.temprun = rr break self.temptimes = self.temprun.times() self.temp_len_run = len(self.temptimes) if ievt<0 or ievt>=self.temp_len_run: return [], [], [],None,None event = {'evt': self.temprun.event(self.temptimes[ievt])} if event['evt'] is None: return [], [], [],None,None self.extractE(event,self) if self.eImage_f is None or self.pulse_eng_f is None or self.photon_eng_f is None: return [], [], [],None, None photon_eng_ind = next((pho_eng_ind for pho_eng_ind, pho_eng_ele in enumerate(self.parent.vars_axis['phoeng']) if pho_eng_ele > self.photon_eng_f),0)-1 pulse_eng_ind = next((pls_eng_ind for pls_eng_ind, pls_eng_ele in enumerate(self.parent.vars_axis['plseng']) if pls_eng_ele > self.pulse_eng_f),0)-1 if photon_eng_ind ==-1 or pulse_eng_ind == -1: return [], [], [],None, None eXinds = [] eYinds = [] eRinds = [] e_peaks = self.alg.peak_finder_v4r2(self.eImage_f, thr_low=self.parent.thr_low, thr_high=self.parent.thr_high, rank=self.parent.rank, r0=self.parent.r0, dr=self.parent.dr) eXs = e_peaks[:,1].astype(int) eYs = e_peaks[:,2].astype(int) eRadius, eAngle =self.parent.cart2polar(eXs, eYs) for e_ind in range(len(eXs)): tempRind = next((eR_ind for eR_ind, eR_ele in enumerate(self.parent.vars_axis['er']) if eR_ele > eRadius[e_ind]),0)-1 # tempAind = next((eA_ind for eA_ind, eA_ele in enumerate(self.eAaxis) if eA_ele > eAngle[e_ind]),0) tempXind = next((eX_ind for eX_ind, eX_ele in enumerate(self.parent.vars_axis['ex']) if eX_ele > eXs[e_ind]),0)-1 tempYind = next((eY_ind for eY_ind, eY_ele in enumerate(self.parent.vars_axis['ey']) if eY_ele > eYs[e_ind]),0)-1 # if tempRind != 0 and tempAind != 0 and tempXind != 0 and tempYind != 0: if tempXind != -1 and tempYind != -1: eXinds.append(tempXind) eYinds.append(tempYind) eRinds.append(tempRind) if len(eXinds) > 0: return eXinds, eYinds, eRinds, photon_eng_ind, pulse_eng_ind else: return [], [],[],None,None
class PiPiCoGate(): def __init__(self, parent, gateName, tof1s, tof1l, tof2s, tof2l, thresh1, thresh2, ang_f): self.parent = parent self.gateName = gateName self.tof1s = tof1s self.tof1l = tof1l self.tof2s = tof2s self.tof2l = tof2l self.extractE = extractE self.PiPiCo_ind1 = (self.parent.TaxisM > self.tof1s) & (self.parent.TaxisM < self.tof1l) self.PiPiCo_ind2 = (self.parent.TaxisM > self.tof2s) & (self.parent.TaxisM < self.tof2l) self.thresh1 = thresh1 self.thresh2 = thresh2 self.ang_f = ang_f self.cos_theta_f1 = np.cos(0.5 * self.ang_f * np.pi / 180) self.cos_theta_f2 = np.cos((90 - 0.5 * self.ang_f) * np.pi / 180) self.cos_theta_f3 = -np.cos((90 - 0.5 * self.ang_f) * np.pi / 180) self.cos_theta_f4 = -np.cos(0.5 * self.ang_f * np.pi / 180) self.particle1 = self.gateName[:2] self.particle2 = self.gateName[2:4] self.alg = PyAlgos() self.alg.set_peak_selection_pars(npix_min=self.parent.npix_min, npix_max=self.parent.npix_max, amax_thr=self.parent.amax_thr, atot_thr=self.parent.atot_thr, son_min=self.parent.son_min) self.init_vars() def init_vars(self): self.temp_len_run = -1 self.temp_irun = -1 self.num_events = 0 self.num_eventss = 0 self.num_eventsl = 0 self.num_eventsm = 0 self.num_events_orth = 0 self.num_events_para = 0 self.num_events_f = 0 self.num_eventss_f = 0 self.num_eventsl_f = 0 self.num_eventsm_f = 0 self.num_events_orth_f = 0 self.num_events_para_f = 0 self.P1 = 0 self.P2 = 0 self.P12 = 0 self.Ps = 0 self.Pl = 0 self.Pm = 0 self.P_orth = 0 self.P_para = 0 # self.XY = np.zeros([self.parent.Xbinnum-1, self.parent.Ybinnum-1]) # self.XT = np.zeros([self.parent.Tbinnum-1, self.parent.Xbinnum-1]) # self.YT = np.zeros([self.parent.Tbinnum-1, self.parent.Ybinnum-1]) # self.PiPiCo = np.zeros([self.parent.Tbinnum-2,self.parent.Tbinnum-2]) self.tempX1ind = [] self.tempY1ind = [] self.tempX2ind = [] self.tempY2ind = [] self.tempX1 = [] self.tempY1 = [] self.tempT1 = [] self.tempT1_f = [] self.tempX2 = [] self.tempY2 = [] self.tempT2 = [] self.tempT2_f = [] self.tempXe = [] self.tempYe = [] self.tempXef1 = [] self.tempYef1 = [] self.tempXef2 = [] self.tempYef2 = [] self.tempEr = [] self.tempErf1 = [] self.tempErf2 = [] self.tempEng1_arr = [] self.tempPx1_arr = [] self.tempPy1_arr = [] self.tempPz1_arr = [] self.tempEng2_arr = [] self.tempPx2_arr = [] self.tempPy2_arr = [] self.tempPz2_arr = [] self.tempEng1ind_arr = [] self.tempPx1ind_arr = [] self.tempPy1ind_arr = [] self.tempPz1ind_arr = [] self.tempEng2ind_arr = [] self.tempPx2ind_arr = [] self.tempPy2ind_arr = [] self.tempPz2ind_arr = [] self.tempX1ind_arr = [] self.tempY1ind_arr = [] self.tempX2ind_arr = [] self.tempY2ind_arr = [] self.hists_pipico = {} self.hists_pipico_all = {} for hist_name in self.parent.hist_names_pipico: if hist_name == 'pipico': x_name = self.parent.monitor_params[hist_name]['x'] x_bin = self.parent.monitor_params[x_name]['bin'] y_name = self.parent.monitor_params[hist_name]['y'] y_bin = self.parent.monitor_params[y_name]['bin'] self.pipico_xbin = x_bin self.pipico_ybin = y_bin x_binnum = int((self.tof1l - self.tof1s) / x_bin) + 1 y_binnum = int((self.tof2l - self.tof2s) / y_bin) + 1 self.pipico_xaxis = np.linspace(self.tof1s, self.tof1l, x_binnum) self.pipico_yaxis = np.linspace(self.tof2s, self.tof2l, y_binnum) self.hists_pipico[hist_name] = np.zeros( [x_binnum - 1, y_binnum - 1]) if self.parent.role == 'master': self.hists_pipico_all[hist_name] = np.zeros( [x_binnum - 1, y_binnum - 1]) else: self.hists_pipico_all[hist_name] = None continue x_name = self.parent.monitor_params[hist_name]['x'] x_binnum = self.parent.vars_binnum[x_name] if 'y' in self.parent.monitor_params[hist_name].keys(): y_name = self.parent.monitor_params[hist_name]['y'] y_binnum = self.parent.vars_binnum[y_name] if 'z' in self.parent.monitor_params[hist_name].keys(): z_name = self.parent.monitor_params[hist_name]['z'] z_binnum = self.parent.vars_binnum[z_name] self.hists_pipico[hist_name] = np.zeros( [x_binnum - 1, y_binnum - 1, z_binnum - 1]) if self.parent.role == 'master': self.hists_pipico_all[hist_name] = np.zeros( [x_binnum - 1, y_binnum - 1, z_binnum - 1]) else: self.hists_pipico_all[hist_name] = None else: self.hists_pipico[hist_name] = np.zeros( [x_binnum - 1, y_binnum - 1]) if self.parent.role == 'master': self.hists_pipico_all[hist_name] = np.zeros( [x_binnum - 1, y_binnum - 1]) else: self.hists_pipico_all[hist_name] = None else: self.hists_pipico[hist_name] = np.zeros([x_binnum - 1]) if self.parent.role == 'master': self.hists_pipico_all[hist_name] = np.zeros([x_binnum - 1]) else: self.hists_pipico_all[hist_name] = None def update_ion(self, Tofind, Xind, Yind, Tofele, Xele, Yele): if (self.parent.TaxisM[Tofind] > self.tof1s and self.parent.TaxisM[Tofind] < self.tof1l): self.P1 += 1 # self.tempX1ind.append(Xind) # self.tempY1ind.append(Yind) self.tempX1.append(Xele) self.tempY1.append(Yele) self.tempT1.append(Tofele) if (self.parent.TaxisM[Tofind] > self.tof2s and self.parent.TaxisM[Tofind] < self.tof2l): self.P2 += 1 # self.tempX2ind.append(Xind) # self.tempY2ind.append(Yind) self.tempX2.append(Xele) self.tempY2.append(Yele) self.tempT2.append(Tofele) if (self.parent.TaxisM[Tofind] > self.tof1s and self.parent.TaxisM[Tofind] < self.tof1l) and ( self.parent.TaxisM[Tofind] > self.tof2s and self.parent.TaxisM[Tofind] < self.tof2l): self.P12 += 1 def is_coin(self): return (self.P1 > 0 and self.P2 > 0 and self.P12 == 0) or self.P12 > 1 def update_electron(self, eAind, eRind, eXind, eYind, pho_ind, pls_ind): self.tempXe.append(eXind) self.tempYe.append(eYind) self.tempEr.append(eRind) # def update_ion(self, Tofind, Xind, Yind): # # self.XY[Xind, Yind] += 1 # self.XT[Tind, Xind] += 1 # self.YT[Tind, Yind] += 1 def update_shotinfo(self, pho_ind, pls_ind, pho_eng, pls_eng): temp_num_particles_ind1 = next( (tNP_ind1 for tNP_ind1, tNP_ele1 in enumerate( self.parent.vars_axis['num_particles']) if tNP_ele1 > self.P1), 0) - 1 temp_num_particles_ind2 = next( (tNP_ind2 for tNP_ind2, tNP_ele2 in enumerate( self.parent.vars_axis['num_particles']) if tNP_ele2 > self.P2), 0) - 1 if temp_num_particles_ind1 != -1: self.hists_pipico['num_particles1_'][temp_num_particles_ind1] += 1 if temp_num_particles_ind2 != -1: self.hists_pipico['num_particles2_'][temp_num_particles_ind2] += 1 for itemp1 in range(len(self.tempX1)): tempEng1, tempPx1, tempPy1, tempPz1 = EngMo( self.tempT1[itemp1], self.tempX1[itemp1], self.tempY1[itemp1], self.parent.tsim[self.particle1], self.parent.xcenter, self.parent.ycenter, self.parent.toff[self.particle1], self.particle1) tempEng_ind1 = next( (tEng_ind1 for tEng_ind1, tEng_ele1 in enumerate( self.parent.vars_axis['eng']) if tEng_ele1 > tempEng1), 0) - 1 tempPx_ind1 = next((tPx_ind1 for tPx_ind1, tPx_ele1 in enumerate( self.parent.vars_axis['px']) if tPx_ele1 > tempPx1), 0) - 1 tempPy_ind1 = next((tPy_ind1 for tPy_ind1, tPy_ele1 in enumerate( self.parent.vars_axis['py']) if tPy_ele1 > tempPy1), 0) - 1 tempPz_ind1 = next((tPz_ind1 for tPz_ind1, tPz_ele1 in enumerate( self.parent.vars_axis['pz']) if tPz_ele1 > tempPz1), 0) - 1 if tempEng_ind1 != -1 and tempPx_ind1 != -1 and tempPy_ind1 != -1 and tempPz_ind1 != -1: # self.Eng1[tempEng_ind1-1] += 1 # self.Momen1[tempPx_ind1-1, tempPy_ind1-1, tempPz_ind1-1] += 1 self.tempEng1_arr.append(tempEng1) self.tempPx1_arr.append(tempPx1) self.tempPy1_arr.append(tempPy1) self.tempPz1_arr.append(tempPz1) self.tempEng1ind_arr.append(tempEng_ind1) self.tempPx1ind_arr.append(tempPx_ind1) self.tempPy1ind_arr.append(tempPy_ind1) self.tempPz1ind_arr.append(tempPz_ind1) self.tempT1_f.append(self.tempT1[itemp1]) # self.tempX1ind_arr.append(self.tempX1ind[itemp1]) # self.tempY1ind_arr.append(self.tempY1ind[itemp1]) for itemp2 in range(len(self.tempX2)): tempEng2, tempPx2, tempPy2, tempPz2 = EngMo( self.tempT2[itemp2], self.tempX2[itemp2], self.tempY2[itemp2], self.parent.tsim[self.particle2], self.parent.xcenter, self.parent.ycenter, self.parent.toff[self.particle2], self.particle2) tempEng_ind2 = next( (tEng_ind2 for tEng_ind2, tEng_ele2 in enumerate( self.parent.vars_axis['eng']) if tEng_ele2 > tempEng2), 0) - 1 tempPx_ind2 = next((tPx_ind2 for tPx_ind2, tPx_ele2 in enumerate( self.parent.vars_axis['px']) if tPx_ele2 > tempPx2), 0) - 1 tempPy_ind2 = next((tPy_ind2 for tPy_ind2, tPy_ele2 in enumerate( self.parent.vars_axis['py']) if tPy_ele2 > tempPy2), 0) - 1 tempPz_ind2 = next((tPz_ind2 for tPz_ind2, tPz_ele2 in enumerate( self.parent.vars_axis['pz']) if tPz_ele2 > tempPz2), 0) - 1 if tempEng_ind2 != -1 and tempPx_ind2 != -1 and tempPy_ind2 != -1 and tempPz_ind2 != -1: # self.Eng2[tempEng_ind2-1] += 1 # self.Momen2[tempPx_ind2-1, tempPy_ind2-1, tempPz_ind2-1] += 1 self.tempEng2_arr.append(tempEng2) self.tempPx2_arr.append(tempPx2) self.tempPy2_arr.append(tempPy2) self.tempPz2_arr.append(tempPz2) self.tempEng2ind_arr.append(tempEng_ind2) self.tempPx2ind_arr.append(tempPx_ind2) self.tempPy2ind_arr.append(tempPy_ind2) self.tempPz2ind_arr.append(tempPz_ind2) self.tempT2_f.append(self.tempT2[itemp2]) # self.tempX2ind_arr.append(self.tempX2ind[itemp2]) # self.tempY2ind_arr.append(self.tempY2ind[itemp2]) for i1 in range(len(self.tempEng1_arr)): for i2 in range(len(self.tempEng2_arr)): tempEng = self.tempEng1_arr[i1] + self.tempEng2_arr[i2] tempPx = self.tempPx1_arr[i1] + self.tempPx2_arr[i2] tempPy = self.tempPy1_arr[i1] + self.tempPy2_arr[i2] tempPz = self.tempPz1_arr[i1] + self.tempPz2_arr[i2] if np.abs(tempPx) > self.parent.pxf or np.abs( tempPy) > self.parent.pyf or np.abs( tempPz) > self.parent.pzf or tempEng < 1: continue tempT1_ind = next( (t1_ind for t1_ind, t1_ele in enumerate(self.pipico_xaxis) if t1_ele > self.tempT1_f[i1]), 0) - 1 tempT2_ind = next( (t2_ind for t2_ind, t2_ele in enumerate(self.pipico_yaxis) if t2_ele > self.tempT2_f[i2]), 0) - 1 if tempT1_ind != -1 and tempT2_ind != -1: self.hists_pipico['pipico'][tempT1_ind, tempT2_ind] += 1 tempEng_ind = next( (tEng_ind for tEng_ind, tEng_ele in enumerate( self.parent.vars_axis['eng']) if tEng_ele > tempEng), 0) - 1 tempEng_a_ind = next( (tEng_ind for tEng_ind, tEng_ele in enumerate( self.parent.vars_axis['eng_a']) if tEng_ele > tempEng), 0) - 1 tempPx_ind = next((tPx_ind for tPx_ind, tPx_ele in enumerate( self.parent.vars_axis['px']) if tPx_ele > tempPx), 0) - 1 tempPy_ind = next((tPy_ind for tPy_ind, tPy_ele in enumerate( self.parent.vars_axis['py']) if tPy_ele > tempPy), 0) - 1 tempPz_ind = next((tPz_ind for tPz_ind, tPz_ele in enumerate( self.parent.vars_axis['pz']) if tPz_ele > tempPz), 0) - 1 # tempPx1_ind = next((tPx1_ind for tPx1_ind, tPx1_ele in enumerate(self.parent.PXaxis) if tPx1_ele > tempPx1[i1]),0) # tempPy1_ind = next((tPy1_ind for tPy1_ind, tPy1_ele in enumerate(self.parent.PYaxis) if tPy1_ele > tempPy1[i1]),0) # tempPz1_ind = next((tPz1_ind for tPz1_ind, tPz1_ele in enumerate(self.parent.PZaxis) if tPz1_ele > tempPz1[i1]),0) if tempEng_ind != -1 and tempPx_ind != -1 and tempPy_ind != -1 and tempPz_ind != -1: self.hists_pipico['eng_'][tempEng_ind] += 1 self.hists_pipico['eng_a_'][tempEng_a_ind] += 1 self.hists_pipico['eng_a_pho_'][tempEng_a_ind] += pho_eng self.hists_pipico['eng_a_pls_'][tempEng_a_ind] += pls_eng self.hists_pipico['eng_a_er'][tempEng_a_ind, self.tempEr] += 1 # self.Momen[tempPx_ind-1, tempPy_ind-1, tempPz_ind-1] += 1 self.hists_pipico['pxsum_'][tempPx_ind] += 1 self.hists_pipico['pysum_'][tempPy_ind] += 1 self.hists_pipico['pzsum_'][tempPz_ind] += 1 # self.Momenf1[self.tempPx1ind_arr[i1], self.tempPy1ind_arr[i1], self.tempPz1ind_arr[i1]] += 1 # self.Momenf2[self.tempPx2ind_arr[i2], self.tempPy2ind_arr[i2], self.tempPz2ind_arr[i2]] += 1 # self.X1Y1[self.tempX1ind_arr[i1],self.tempY1ind_arr[i1]] += 1 # self.X2Y2[self.tempX2ind_arr[i2],self.tempY2ind_arr[i2]] += 1 cos_theta = tempPx / np.sqrt(tempPx**2 + tempPy**2 + tempPz**2) cos_theta_orth = tempPy / np.sqrt(tempPx**2 + tempPy**2 + tempPz**2) if cos_theta >= self.cos_theta_f1 or cos_theta <= self.cos_theta_f4: self.hists_pipico['eng_para_'][tempEng_ind] += 1 # self.Eng1_para[self.tempEng1ind_arr[i1]] += 1 # self.Eng2_para[self.tempEng2ind_arr[i2]] += 1 # self.Momens1[self.tempPx1ind_arr[i1], self.tempPy1ind_arr[i1], self.tempPz1ind_arr[i1]] += 1 # self.Momens2[self.tempPx2ind_arr[i2], self.tempPy2ind_arr[i2], self.tempPz2ind_arr[i2]] += 1 self.P_para += 1 # elif cos_theta >= self.cos_theta_f3 and cos_theta <= self.cos_theta_f2: # self.Eng_orth[tempEng_ind] += 1 elif cos_theta_orth >= self.cos_theta_f1 or cos_theta_orth <= self.cos_theta_f4: self.hists_pipico['eng_orth_'][tempEng_ind] += 1 # self.Eng1_orth[self.tempEng1ind_arr[i1]] += 1 # self.Eng2_orth[self.tempEng2ind_arr[i2]] += 1 # self.Momenl1[self.tempPx1ind_arr[i1], self.tempPy1ind_arr[i1], self.tempPz1ind_arr[i1]] += 1 # self.Momenl2[self.tempPx2ind_arr[i2], self.tempPy2ind_arr[i2], self.tempPz2ind_arr[i2]] += 1 # self.Momenl[tempPx_ind, tempPy_ind, tempPz_ind] += 1 self.P_orth += 1 if tempEng < self.thresh1: self.hists_pipico['eng_s_'][tempEng_ind] += 1 # self.Engs1[self.tempEng1ind_arr[i1]-1] += 1 # self.Engs2[self.tempEng2ind_arr[i2]-1] += 1 # self.Momens1[self.tempPx1ind_arr[i1]-1, self.tempPy1ind_arr[i1]-1, self.tempPz1ind_arr[i1]-1] += 1 # self.Momens2[self.tempPx2ind_arr[i2]-1, self.tempPy2ind_arr[i2]-1, self.tempPz2ind_arr[i2]-1] += 1 self.Ps += 1 elif tempEng >= self.thresh1 and tempEng < self.thresh2: self.hists_pipico['eng_m_'][tempEng_ind] += 1 # self.Engm1[self.tempEng1ind_arr[i1]-1] += 1 # self.Engm2[self.tempEng2ind_arr[i2]-1] += 1 # self.Momenm1[self.tempPx1ind_arr[i1]-1, self.tempPy1ind_arr[i1]-1, self.tempPz1ind_arr[i1]-1] += 1 # self.Momenm2[self.tempPx2ind_arr[i2]-1, self.tempPy2ind_arr[i2]-1, self.tempPz2ind_arr[i2]-1] += 1 # self.Momenl[tempPx_ind-1, tempPy_ind-1, tempPz_ind-1] += 1 self.Pm += 1 elif tempEng >= self.thresh2: self.hists_pipico['eng_l_'][tempEng_ind] += 1 # self.Engl1[self.tempEng1ind_arr[i1]-1] += 1 # self.Engl2[self.tempEng2ind_arr[i2]-1] += 1 # self.Momenl1[self.tempPx1ind_arr[i1]-1, self.tempPy1ind_arr[i1]-1, self.tempPz1ind_arr[i1]-1] += 1 # self.Momenl2[self.tempPx2ind_arr[i2]-1, self.tempPy2ind_arr[i2]-1, self.tempPz2ind_arr[i2]-1] += 1 # self.Momenl[tempPx_ind-1, tempPy_ind-1, tempPz_ind-1] += 1 self.Pl += 1 self.tempXef1, self.tempYef1, self.tempErf1, self.pho_ind_f1, self.pls_ind_f1 = self.processDataE( self.parent.irun, self.parent.ievt - 1) self.tempXef2, self.tempYef2, self.tempErf2, self.pho_ind_f2, self.pls_ind_f2 = self.processDataE( self.parent.irun, self.parent.ievt + 1) if self.Ps > 0: self.fill_ele(self.tempXe, self.tempYe, self.tempEr, pho_ind, pls_ind, self.hists_pipico['ex_ey_s'], self.hists_pipico['er_er_s'], self.hists_pipico['pho_pls_eng_s'], self.num_eventss) self.fill_ele_f(self.tempXef1, self.tempYef1, self.tempErf1, self.pho_ind_f1, self.pls_ind_f1, self.hists_pipico['ex_ey_s_fls1'], self.hists_pipico['er_er_s_fls1'], self.hists_pipico['pho_pls_eng_s_fls1'], self.num_eventss_f) self.fill_ele_f(self.tempXef2, self.tempYef2, self.tempErf2, self.pho_ind_f2, self.pls_ind_f2, self.hists_pipico['ex_ey_s_fls2'], self.hists_pipico['er_er_s_fls2'], self.hists_pipico['pho_pls_eng_s_fls2'], self.num_eventss_f) if self.Pm > 0: self.fill_ele(self.tempXe, self.tempYe, self.tempEr, pho_ind, pls_ind, self.hists_pipico['ex_ey_m'], self.hists_pipico['er_er_m'], self.hists_pipico['pho_pls_eng_m'], self.num_eventsm) self.fill_ele_f(self.tempXef1, self.tempYef1, self.tempErf1, self.pho_ind_f1, self.pls_ind_f1, self.hists_pipico['ex_ey_m_fls1'], self.hists_pipico['er_er_m_fls1'], self.hists_pipico['pho_pls_eng_m_fls1'], self.num_eventsm_f) self.fill_ele_f(self.tempXef2, self.tempYef2, self.tempErf2, self.pho_ind_f2, self.pls_ind_f2, self.hists_pipico['ex_ey_m_fls2'], self.hists_pipico['er_er_m_fls2'], self.hists_pipico['pho_pls_eng_m_fls2'], self.num_eventsm_f) if self.Pl > 0: self.fill_ele(self.tempXe, self.tempYe, self.tempEr, pho_ind, pls_ind, self.hists_pipico['ex_ey_l'], self.hists_pipico['er_er_l'], self.hists_pipico['pho_pls_eng_l'], self.num_eventsl) self.fill_ele_f(self.tempXef1, self.tempYef1, self.tempErf1, self.pho_ind_f1, self.pls_ind_f1, self.hists_pipico['ex_ey_l_fls1'], self.hists_pipico['er_er_l_fls1'], self.hists_pipico['pho_pls_eng_l_fls1'], self.num_eventsl_f) self.fill_ele_f(self.tempXef2, self.tempYef2, self.tempErf2, self.pho_ind_f2, self.pls_ind_f2, self.hists_pipico['ex_ey_l_fls2'], self.hists_pipico['er_er_l_fls2'], self.hists_pipico['pho_pls_eng_l_fls2'], self.num_eventsl_f) if self.P_para > 0: self.fill_ele(self.tempXe, self.tempYe, self.tempEr, pho_ind, pls_ind, self.hists_pipico['ex_ey_para'], self.hists_pipico['er_er_para'], self.hists_pipico['pho_pls_eng_para'], self.num_events_para) self.fill_ele_f(self.tempXef1, self.tempYef1, self.tempErf1, self.pho_ind_f1, self.pls_ind_f1, self.hists_pipico['ex_ey_para_fls1'], self.hists_pipico['er_er_para_fls1'], self.hists_pipico['pho_pls_eng_para_fls1'], self.num_events_para_f) self.fill_ele_f(self.tempXef2, self.tempYef2, self.tempErf2, self.pho_ind_f2, self.pls_ind_f2, self.hists_pipico['ex_ey_para_fls2'], self.hists_pipico['er_er_para_fls2'], self.hists_pipico['pho_pls_eng_para_fls2'], self.num_events_para_f) if self.P_orth > 0: self.fill_ele(self.tempXe, self.tempYe, self.tempEr, pho_ind, pls_ind, self.hists_pipico['ex_ey_orth'], self.hists_pipico['er_er_orth'], self.hists_pipico['pho_pls_eng_orth'], self.num_events_orth) self.fill_ele_f(self.tempXef1, self.tempYef1, self.tempErf1, self.pho_ind_f1, self.pls_ind_f1, self.hists_pipico['ex_ey_orth_fls1'], self.hists_pipico['er_er_orth_fls1'], self.hists_pipico['pho_pls_eng_orth_fls1'], self.num_events_orth_f) self.fill_ele_f(self.tempXef2, self.tempYef2, self.tempErf2, self.pho_ind_f2, self.pls_ind_f2, self.hists_pipico['ex_ey_orth_fls2'], self.hists_pipico['er_er_orth_fls2'], self.hists_pipico['pho_pls_eng_orth_fls2'], self.num_events_orth_f) if self.Ps > 0 or self.Pl > 0 or self.Pm > 0: self.fill_ele(self.tempXe, self.tempYe, self.tempEr, pho_ind, pls_ind, self.hists_pipico['ex_ey_pg'], self.hists_pipico['er_er_pg'], self.hists_pipico['pho_pls_eng_pg'], self.num_events) self.fill_ele_f(self.tempXef1, self.tempYef1, self.tempErf1, self.pho_ind_f1, self.pls_ind_f1, self.hists_pipico['ex_ey_fls1'], self.hists_pipico['er_er_pg_fls1'], self.hists_pipico['pho_pls_eng_fls1'], self.num_events_f) self.fill_ele_f(self.tempXef2, self.tempYef2, self.tempErf2, self.pho_ind_f2, self.pls_ind_f2, self.hists_pipico['ex_ey_fls2'], self.hists_pipico['er_er_pg_fls2'], self.hists_pipico['pho_pls_eng_fls2'], self.num_events_f) def fill_ele(self, tempXe0, tempYe0, tempEr0, pho_ind0, pls_ind0, eXY0, eReR0, pho_pls_eng0, num_events0): for itemp in range(len(tempXe0)): eXY0[tempXe0[itemp], tempYe0[itemp]] += 1 for itemp in range(len(tempEr0)): eReR0[tempEr0[itemp], tempEr0] += 1 pho_pls_eng0[pho_ind0, pls_ind0] += 1 num_events0 += 1 def fill_ele_f(self, tempXe0, tempYe0, tempEr0, pho_ind0, pls_ind0, eXY0, eReR0, pho_pls_eng0, num_events0): if len(tempXe0) > 0: self.fill_ele(tempXe0, tempYe0, tempEr0, pho_ind0, pls_ind0, eXY0, eReR0, pho_pls_eng0, num_events0) def reset_coin_var(self): self.P1 = 0 self.P2 = 0 self.P12 = 0 self.tempX1ind = [] self.tempY1ind = [] self.tempX2ind = [] self.tempY2ind = [] self.tempX1 = [] self.tempY1 = [] self.tempT1 = [] self.tempT1_f = [] self.tempX2 = [] self.tempY2 = [] self.tempT2 = [] self.tempT2_f = [] self.tempXe = [] self.tempYe = [] self.tempXe_f1 = [] self.tempYe_f1 = [] self.tempXe_f2 = [] self.tempYe_f2 = [] self.tempEr = [] self.tempErf1 = [] self.tempErf2 = [] self.tempEng1_arr = [] self.tempPx1_arr = [] self.tempPy1_arr = [] self.tempPz1_arr = [] self.tempEng2_arr = [] self.tempPx2_arr = [] self.tempPy2_arr = [] self.tempPz2_arr = [] self.tempEng1ind_arr = [] self.tempPx1ind_arr = [] self.tempPy1ind_arr = [] self.tempPz1ind_arr = [] self.tempEng2ind_arr = [] self.tempPx2ind_arr = [] self.tempPy2ind_arr = [] self.tempPz2ind_arr = [] self.tempX1ind_arr = [] self.tempY1ind_arr = [] self.tempX2ind_arr = [] self.tempY2ind_arr = [] # self.num_eventss = 0 # self.num_eventsl = 0 self.Ps = 0 self.Pl = 0 self.Pm = 0 self.P_orth = 0 self.P_para = 0 def save_var(self, h5f): grp = h5f.create_group('PiPiCoGate_' + self.gateName) # grp.create_dataset('XY',data = self.XY) # grp.create_dataset('XT',data = self.XT) # grp.create_dataset('YT',data = self.YT) grp.create_dataset( 'gateInfo_tof1s_tof1l_tof2s_tof2l_pipixbin_pipiybin', data=np.array([ self.tof1s, self.tof1l, self.tof2s, self.tof2l, self.pipico_xbin, self.pipico_ybin ])) for histname in self.parent.hist_names_pipico: try: grp.create_dataset(histname, data=self.hists_pipico_all[histname]) except Exception as e: print(histname + ' failed to be saved.') print(e) def reduce(self): for histname in self.parent.hist_names_pipico: try: self.time_a = time.time() MPI.COMM_WORLD.Reduce(self.hists_pipico[histname], self.hists_pipico_all[histname]) self.time_b = time.time() print(histname + ' reduced by ' + 'Rank {0} in {1:.2f} seconds'.format( self.parent.mpi_rank, self.time_b - self.time_a)) except Exception as e: print(histname + ' failed to be redueced by ' + str(self.parent.mpi_rank)) print(e) def processDataE(self, irun, ievt): if self.temp_irun != irun: self.psana_source = psana.DataSource(self.parent.source) for ii, rr in enumerate(self.psana_source.runs()): if ii == irun: self.temp_irun = irun self.temprun = rr break self.temptimes = self.temprun.times() self.temp_len_run = len(self.temptimes) if ievt < 0 or ievt >= self.temp_len_run: return [], [], [], None, None event = {'evt': self.temprun.event(self.temptimes[ievt])} if event['evt'] is None: return [], [], [], None, None self.extractE(event, self) if self.eImage_f is None or self.pulse_eng_f is None or self.photon_eng_f is None: return [], [], [], None, None photon_eng_ind = next((pho_eng_ind for pho_eng_ind, pho_eng_ele in enumerate(self.parent.vars_axis['phoeng']) if pho_eng_ele > self.photon_eng_f), 0) - 1 pulse_eng_ind = next((pls_eng_ind for pls_eng_ind, pls_eng_ele in enumerate(self.parent.vars_axis['plseng']) if pls_eng_ele > self.pulse_eng_f), 0) - 1 if photon_eng_ind == -1 or pulse_eng_ind == -1: return [], [], [], None, None eXinds = [] eYinds = [] eRinds = [] e_peaks = self.alg.peak_finder_v4r2(self.eImage_f, thr_low=self.parent.thr_low, thr_high=self.parent.thr_high, rank=self.parent.rank, r0=self.parent.r0, dr=self.parent.dr) eXs = e_peaks[:, 1].astype(int) eYs = e_peaks[:, 2].astype(int) eRadius, eAngle = self.parent.cart2polar(eXs, eYs) for e_ind in range(len(eXs)): tempRind = next( (eR_ind for eR_ind, eR_ele in enumerate(self.parent.vars_axis['er']) if eR_ele > eRadius[e_ind]), 0) - 1 # tempAind = next((eA_ind for eA_ind, eA_ele in enumerate(self.eAaxis) if eA_ele > eAngle[e_ind]),0) tempXind = next( (eX_ind for eX_ind, eX_ele in enumerate(self.parent.vars_axis['ex']) if eX_ele > eXs[e_ind]), 0) - 1 tempYind = next( (eY_ind for eY_ind, eY_ele in enumerate(self.parent.vars_axis['ey']) if eY_ele > eYs[e_ind]), 0) - 1 # if tempRind != 0 and tempAind != 0 and tempXind != 0 and tempYind != 0: if tempXind != -1 and tempYind != -1: eXinds.append(tempXind) eYinds.append(tempYind) eRinds.append(tempRind) if len(eXinds) > 0: return eXinds, eYinds, eRinds, photon_eng_ind, pulse_eng_ind else: return [], [], [], None, None
import psana ds = psana.DataSource('exp=xpptut15:run=54:smd') det = psana.Detector('cspad') from ImgAlgos.PyAlgos import PyAlgos alg = PyAlgos() for nevent, evt in enumerate(ds.events()): if nevent >= 2: break nda = det.calib(evt) if nda is None: continue thr = 20 numpix = alg.number_of_pix_above_thr(nda, thr) totint = alg.intensity_of_pix_above_thr(nda, thr) print '%d pixels have total intensity %5.1f above threshold %5.1f' % ( numpix, totint, thr)
class PeakFinder: def __init__(self,exp,run,detname,evt,detector,algorithm,hitParam_alg_npix_min,hitParam_alg_npix_max, hitParam_alg_amax_thr,hitParam_alg_atot_thr,hitParam_alg_son_min, streakMask_on,streakMask_sigma,streakMask_width,userMask_path,psanaMask_on,psanaMask_calib, psanaMask_status,psanaMask_edges,psanaMask_central,psanaMask_unbond,psanaMask_unbondnrs, medianFilterOn=0, medianRank=5, radialFilterOn=0, distance=0.0, windows=None, **kwargs): self.exp = exp self.run = run self.detname = detname self.det = detector self.algorithm = algorithm self.maxRes = 0 self.npix_min=hitParam_alg_npix_min self.npix_max=hitParam_alg_npix_max self.amax_thr=hitParam_alg_amax_thr self.atot_thr=hitParam_alg_atot_thr self.son_min=hitParam_alg_son_min self.streakMask_on = str2bool(streakMask_on) self.streakMask_sigma = streakMask_sigma self.streakMask_width = streakMask_width self.userMask_path = userMask_path self.psanaMask_on = str2bool(psanaMask_on) self.psanaMask_calib = str2bool(psanaMask_calib) self.psanaMask_status = str2bool(psanaMask_status) self.psanaMask_edges = str2bool(psanaMask_edges) self.psanaMask_central = str2bool(psanaMask_central) self.psanaMask_unbond = str2bool(psanaMask_unbond) self.psanaMask_unbondnrs = str2bool(psanaMask_unbondnrs) self.medianFilterOn = medianFilterOn self.medianRank = medianRank self.radialFilterOn = radialFilterOn self.distance = distance self.windows = windows self.userMask = None self.psanaMask = None self.streakMask = None self.userPsanaMask = None self.combinedMask = None # Make user mask if self.userMask_path is not None: self.userMask = np.load(self.userMask_path) # Make psana mask if self.psanaMask_on: self.psanaMask = detector.mask(evt, calib=self.psanaMask_calib, status=self.psanaMask_status, edges=self.psanaMask_edges, central=self.psanaMask_central, unbond=self.psanaMask_unbond, unbondnbrs=self.psanaMask_unbondnrs) # Combine userMask and psanaMask self.userPsanaMask = np.ones_like(self.det.calib(evt)) if self.userMask is not None: self.userPsanaMask *= self.userMask if self.psanaMask is not None: self.userPsanaMask *= self.psanaMask # Powder of hits and misses self.powderHits = np.zeros_like(self.userPsanaMask) self.powderMisses = np.zeros_like(self.userPsanaMask) self.alg = PyAlgos(windows=self.windows, mask=self.userPsanaMask, pbits=0) # set peak-selector parameters: self.alg.set_peak_selection_pars(npix_min=self.npix_min, npix_max=self.npix_max, \ amax_thr=self.amax_thr, atot_thr=self.atot_thr, \ son_min=self.son_min) # set algorithm specific parameters if algorithm == 1: self.hitParam_alg1_thr_low = kwargs["alg1_thr_low"] self.hitParam_alg1_thr_high = kwargs["alg1_thr_high"] self.hitParam_alg1_rank = int(kwargs["alg1_rank"]) self.hitParam_alg1_radius = int(kwargs["alg1_radius"]) self.hitParam_alg1_dr = kwargs["alg1_dr"] elif algorithm == 3: self.hitParam_alg3_rank = kwargs["alg3_rank"] self.hitParam_alg3_r0 = int(kwargs["alg3_r0"]) self.hitParam_alg3_dr = kwargs["alg3_dr"] elif algorithm == 4: self.hitParam_alg4_thr_low = kwargs["alg4_thr_low"] self.hitParam_alg4_thr_high = kwargs["alg4_thr_high"] self.hitParam_alg4_rank = int(kwargs["alg4_rank"]) self.hitParam_alg4_r0 = int(kwargs["alg4_r0"]) self.hitParam_alg4_dr = kwargs["alg4_dr"] self.maxNumPeaks = 2048 self.StreakMask = myskbeam.StreakMask(self.det, evt, width=self.streakMask_width, sigma=self.streakMask_sigma) self.cx, self.cy = self.det.point_indexes(evt, pxy_um=(0, 0)) self.iX = np.array(self.det.indexes_x(evt), dtype=np.int64) self.iY = np.array(self.det.indexes_y(evt), dtype=np.int64) if len(self.iX.shape) == 2: self.iX = np.expand_dims(self.iX, axis=0) self.iY = np.expand_dims(self.iY, axis=0) # Initialize radial background subtraction self.setupExperiment() if self.radialFilterOn: self.setupRadialBackground() self.updatePolarizationFactor() def setupExperiment(self): self.ds = psana.DataSource('exp=' + str(self.exp) + ':run=' + str(self.run) + ':idx') self.run = self.ds.runs().next() self.times = self.run.times() self.eventTotal = len(self.times) self.env = self.ds.env() self.evt = self.run.event(self.times[0]) self.det = psana.Detector(str(self.detname), self.env) self.det.do_reshape_2d_to_3d(flag=True) def setupRadialBackground(self): self.geo = self.det.geometry(self.run) # self.geo = GeometryAccess(self.parent.geom.calibPath+'/'+self.parent.geom.calibFile) self.xarr, self.yarr, self.zarr = self.geo.get_pixel_coords() self.ix = self.det.indexes_x(self.evt) self.iy = self.det.indexes_y(self.evt) if self.ix is None: self.iy = np.tile(np.arange(self.userMask.shape[1]), [self.userMask.shape[2], 1]) self.ix = np.transpose(self.iy) self.iX = np.array(self.ix, dtype=np.int64) self.iY = np.array(self.iy, dtype=np.int64) if len(self.iX.shape) == 2: self.iX = np.expand_dims(self.iX, axis=0) self.iY = np.expand_dims(self.iY, axis=0) self.mask = self.geo.get_pixel_mask( mbits=0377) # mask for 2x1 edges, two central columns, and unbound pixels with their neighbours self.rb = RadialBkgd(self.xarr, self.yarr, mask=self.mask, radedges=None, nradbins=100, phiedges=(0, 360), nphibins=1) def updatePolarizationFactor(self): self.pf = polarization_factor(self.rb.pixel_rad(), self.rb.pixel_phi(), self.distance * 1e6) # convert to um def findPeaks(self, calib, evt): if self.streakMask_on: # make new streak mask self.streakMask = self.StreakMask.getStreakMaskCalib(evt) # Apply background correction if self.medianFilterOn: calib -= median_filter_ndarr(calib, self.medianRank) if self.radialFilterOn: self.pf.shape = calib.shape # FIXME: shape is 1d calib = self.rb.subtract_bkgd(calib * self.pf) calib.shape = self.userPsanaMask.shape # FIXME: shape is 1d if self.streakMask is not None: self.combinedMask = self.userPsanaMask * self.streakMask else: self.combinedMask = self.userPsanaMask # set new mask #self.alg = PyAlgos(windows=self.windows, mask=self.combinedMask, pbits=0) # set peak-selector parameters: #self.alg.set_peak_selection_pars(npix_min=self.npix_min, npix_max=self.npix_max, \ # amax_thr=self.amax_thr, atot_thr=self.atot_thr, \ # son_min=self.son_min) self.alg.set_mask(self.combinedMask) # This doesn't work reliably # set algorithm specific parameters if self.algorithm == 1: # v1 - aka Droplet Finder - two-threshold peak-finding algorithm in restricted region # around pixel with maximal intensity. self.peaks = self.alg.peak_finder_v4r2(calib, thr_low=self.hitParam_alg1_thr_low, thr_high=self.hitParam_alg1_thr_high, rank=self.hitParam_alg1_rank, r0=self.hitParam_alg1_radius, dr=self.hitParam_alg1_dr) elif self.algorithm == 3: self.peaks = self.alg.peak_finder_v3(calib, rank=self.hitParam_alg3_rank, r0=self.hitParam_alg3_r0, dr=self.hitParam_alg3_dr) elif self.algorithm == 4: # v4 - aka iDroplet Finder - two-threshold peak-finding algorithm in restricted region # around pixel with maximal intensity. self.peaks = self.alg.peak_finder_v4(calib, thr_low=self.hitParam_alg4_thr_low, thr_high=self.hitParam_alg4_thr_high, \ rank=self.hitParam_alg4_rank, r0=self.hitParam_alg4_r0, dr=self.hitParam_alg4_dr) self.numPeaksFound = self.peaks.shape[0] if self.numPeaksFound > 0: cenX = self.iX[np.array(self.peaks[:, 0], dtype=np.int64), np.array(self.peaks[:, 1], dtype=np.int64), np.array( self.peaks[:, 2], dtype=np.int64)] + 0.5 cenY = self.iY[np.array(self.peaks[:, 0], dtype=np.int64), np.array(self.peaks[:, 1], dtype=np.int64), np.array( self.peaks[:, 2], dtype=np.int64)] + 0.5 self.maxRes = getMaxRes(cenX, cenY, self.cx, self.cy) else: self.maxRes = 0 if self.numPeaksFound >= 15: self.powderHits = np.maximum(self.powderHits, calib) else: self.powderMisses = np.maximum(self.powderMisses, calib)
class PeakFinder: def __init__(self, exp, run, detname, evt, detector, algorithm, hitParam_alg_npix_min, hitParam_alg_npix_max, hitParam_alg_amax_thr, hitParam_alg_atot_thr, hitParam_alg_son_min, streakMask_on, streakMask_sigma, streakMask_width, userMask_path, psanaMask_on, psanaMask_calib, psanaMask_status, psanaMask_edges, psanaMask_central, psanaMask_unbond, psanaMask_unbondnrs, medianFilterOn=0, medianRank=5, radialFilterOn=0, distance=0.0, windows=None, **kwargs): self.exp = exp self.run = run self.detname = detname self.det = detector self.algorithm = algorithm self.maxRes = 0 self.npix_min = hitParam_alg_npix_min self.npix_max = hitParam_alg_npix_max self.amax_thr = hitParam_alg_amax_thr self.atot_thr = hitParam_alg_atot_thr self.son_min = hitParam_alg_son_min self.streakMask_on = str2bool(streakMask_on) self.streakMask_sigma = streakMask_sigma self.streakMask_width = streakMask_width self.userMask_path = userMask_path self.psanaMask_on = str2bool(psanaMask_on) self.psanaMask_calib = str2bool(psanaMask_calib) self.psanaMask_status = str2bool(psanaMask_status) self.psanaMask_edges = str2bool(psanaMask_edges) self.psanaMask_central = str2bool(psanaMask_central) self.psanaMask_unbond = str2bool(psanaMask_unbond) self.psanaMask_unbondnrs = str2bool(psanaMask_unbondnrs) self.medianFilterOn = medianFilterOn self.medianRank = medianRank self.radialFilterOn = radialFilterOn self.distance = distance self.windows = windows self.userMask = None self.psanaMask = None self.streakMask = None self.userPsanaMask = None self.combinedMask = None # Make user mask if self.userMask_path is not None: self.userMask = np.load(self.userMask_path) # Make psana mask if self.psanaMask_on: self.psanaMask = detector.mask(evt, calib=self.psanaMask_calib, status=self.psanaMask_status, edges=self.psanaMask_edges, central=self.psanaMask_central, unbond=self.psanaMask_unbond, unbondnbrs=self.psanaMask_unbondnrs) # Combine userMask and psanaMask self.userPsanaMask = np.ones_like(self.det.calib(evt)) if self.userMask is not None: self.userPsanaMask *= self.userMask if self.psanaMask is not None: self.userPsanaMask *= self.psanaMask # Powder of hits and misses self.powderHits = np.zeros_like(self.userPsanaMask) self.powderMisses = np.zeros_like(self.userPsanaMask) self.alg = PyAlgos(windows=self.windows, mask=self.userPsanaMask, pbits=0) # set peak-selector parameters: self.alg.set_peak_selection_pars(npix_min=self.npix_min, npix_max=self.npix_max, \ amax_thr=self.amax_thr, atot_thr=self.atot_thr, \ son_min=self.son_min) # set algorithm specific parameters if algorithm == 1: self.hitParam_alg1_thr_low = kwargs["alg1_thr_low"] self.hitParam_alg1_thr_high = kwargs["alg1_thr_high"] self.hitParam_alg1_rank = int(kwargs["alg1_rank"]) self.hitParam_alg1_radius = int(kwargs["alg1_radius"]) self.hitParam_alg1_dr = kwargs["alg1_dr"] elif algorithm == 3: self.hitParam_alg3_rank = kwargs["alg3_rank"] self.hitParam_alg3_r0 = int(kwargs["alg3_r0"]) self.hitParam_alg3_dr = kwargs["alg3_dr"] elif algorithm == 4: self.hitParam_alg4_thr_low = kwargs["alg4_thr_low"] self.hitParam_alg4_thr_high = kwargs["alg4_thr_high"] self.hitParam_alg4_rank = int(kwargs["alg4_rank"]) self.hitParam_alg4_r0 = int(kwargs["alg4_r0"]) self.hitParam_alg4_dr = kwargs["alg4_dr"] self.maxNumPeaks = 2048 self.StreakMask = myskbeam.StreakMask(self.det, evt, width=self.streakMask_width, sigma=self.streakMask_sigma) self.cx, self.cy = self.det.point_indexes(evt, pxy_um=(0, 0)) self.iX = np.array(self.det.indexes_x(evt), dtype=np.int64) self.iY = np.array(self.det.indexes_y(evt), dtype=np.int64) if len(self.iX.shape) == 2: self.iX = np.expand_dims(self.iX, axis=0) self.iY = np.expand_dims(self.iY, axis=0) # Initialize radial background subtraction self.setupExperiment() if self.radialFilterOn: self.setupRadialBackground() self.updatePolarizationFactor() def setupExperiment(self): self.ds = psana.DataSource('exp=' + str(self.exp) + ':run=' + str(self.run) + ':idx') self.run = self.ds.runs().next() self.times = self.run.times() self.eventTotal = len(self.times) self.env = self.ds.env() self.evt = self.run.event(self.times[0]) self.det = psana.Detector(str(self.detname), self.env) self.det.do_reshape_2d_to_3d(flag=True) def setupRadialBackground(self): self.geo = self.det.geometry( self.run ) # self.geo = GeometryAccess(self.parent.geom.calibPath+'/'+self.parent.geom.calibFile) self.xarr, self.yarr, self.zarr = self.geo.get_pixel_coords() self.ix = self.det.indexes_x(self.evt) self.iy = self.det.indexes_y(self.evt) if self.ix is None: self.iy = np.tile(np.arange(self.userMask.shape[1]), [self.userMask.shape[2], 1]) self.ix = np.transpose(self.iy) self.iX = np.array(self.ix, dtype=np.int64) self.iY = np.array(self.iy, dtype=np.int64) if len(self.iX.shape) == 2: self.iX = np.expand_dims(self.iX, axis=0) self.iY = np.expand_dims(self.iY, axis=0) self.mask = self.geo.get_pixel_mask( mbits=0377 ) # mask for 2x1 edges, two central columns, and unbound pixels with their neighbours self.rb = RadialBkgd(self.xarr, self.yarr, mask=self.mask, radedges=None, nradbins=100, phiedges=(0, 360), nphibins=1) def updatePolarizationFactor(self): self.pf = polarization_factor(self.rb.pixel_rad(), self.rb.pixel_phi(), self.distance * 1e6) # convert to um def findPeaks(self, calib, evt): if self.streakMask_on: # make new streak mask self.streakMask = self.StreakMask.getStreakMaskCalib(evt) # Apply background correction if self.medianFilterOn: calib -= median_filter_ndarr(calib, self.medianRank) if self.radialFilterOn: self.pf.shape = calib.shape # FIXME: shape is 1d calib = self.rb.subtract_bkgd(calib * self.pf) calib.shape = self.userPsanaMask.shape # FIXME: shape is 1d if self.streakMask is not None: self.combinedMask = self.userPsanaMask * self.streakMask else: self.combinedMask = self.userPsanaMask # set new mask #self.alg = PyAlgos(windows=self.windows, mask=self.combinedMask, pbits=0) # set peak-selector parameters: #self.alg.set_peak_selection_pars(npix_min=self.npix_min, npix_max=self.npix_max, \ # amax_thr=self.amax_thr, atot_thr=self.atot_thr, \ # son_min=self.son_min) self.alg.set_mask(self.combinedMask) # This doesn't work reliably # set algorithm specific parameters if self.algorithm == 1: # v1 - aka Droplet Finder - two-threshold peak-finding algorithm in restricted region # around pixel with maximal intensity. self.peaks = self.alg.peak_finder_v4r2( calib, thr_low=self.hitParam_alg1_thr_low, thr_high=self.hitParam_alg1_thr_high, rank=self.hitParam_alg1_rank, r0=self.hitParam_alg1_radius, dr=self.hitParam_alg1_dr) elif self.algorithm == 3: self.peaks = self.alg.peak_finder_v3(calib, rank=self.hitParam_alg3_rank, r0=self.hitParam_alg3_r0, dr=self.hitParam_alg3_dr) elif self.algorithm == 4: # v4 - aka iDroplet Finder - two-threshold peak-finding algorithm in restricted region # around pixel with maximal intensity. self.peaks = self.alg.peak_finder_v4(calib, thr_low=self.hitParam_alg4_thr_low, thr_high=self.hitParam_alg4_thr_high, \ rank=self.hitParam_alg4_rank, r0=self.hitParam_alg4_r0, dr=self.hitParam_alg4_dr) self.numPeaksFound = self.peaks.shape[0] if self.numPeaksFound > 0: cenX = self.iX[np.array(self.peaks[:, 0], dtype=np.int64), np.array(self.peaks[:, 1], dtype=np.int64), np.array(self.peaks[:, 2], dtype=np.int64)] + 0.5 cenY = self.iY[np.array(self.peaks[:, 0], dtype=np.int64), np.array(self.peaks[:, 1], dtype=np.int64), np.array(self.peaks[:, 2], dtype=np.int64)] + 0.5 self.maxRes = getMaxRes(cenX, cenY, self.cx, self.cy) else: self.maxRes = 0 if self.numPeaksFound >= 15: self.powderHits = np.maximum(self.powderHits, calib) else: self.powderMisses = np.maximum(self.powderMisses, calib)
def updateClassification(self): if self.parent.calib is not None: if self.parent.mk.streakMaskOn: self.parent.mk.initMask() self.parent.mk.streakMask = self.parent.mk.StreakMask.getStreakMaskCalib(self.parent.evt) if self.parent.mk.streakMask is None: self.parent.mk.streakMaskAssem = None else: self.parent.mk.streakMaskAssem = self.parent.det.image(self.parent.evt, self.parent.mk.streakMask) self.algInitDone = False self.parent.mk.displayMask() # update combined mask self.parent.mk.combinedMask = np.ones_like(self.parent.calib) if self.parent.mk.streakMask is not None and self.parent.mk.streakMaskOn is True: self.parent.mk.combinedMask *= self.parent.mk.streakMask if self.parent.mk.userMask is not None and self.parent.mk.userMaskOn is True: self.parent.mk.combinedMask *= self.parent.mk.userMask if self.parent.mk.psanaMask is not None and self.parent.mk.psanaMaskOn is True: self.parent.mk.combinedMask *= self.parent.mk.psanaMask # Peak output (0-16): # 0 seg # 1 row # 2 col # 3 npix: no. of pixels in the ROI intensities above threshold # 4 amp_max: max intensity # 5 amp_tot: sum of intensities # 6,7: row_cgrav: center of mass # 8,9: row_sigma # 10,11,12,13: minimum bounding box # 14: background # 15: noise # 16: signal over noise if self.algorithm == 0: # No peak algorithm self.peaks = None self.drawPeaks() else: # Only initialize the hit finder algorithm once if self.algInitDone is False: self.windows = None self.alg = [] self.alg = PyAlgos(windows=self.windows, mask=self.parent.mk.combinedMask, pbits=0) # set peak-selector parameters: if self.algorithm == 1: self.alg.set_peak_selection_pars(npix_min=self.hitParam_alg1_npix_min, npix_max=self.hitParam_alg1_npix_max, \ amax_thr=self.hitParam_alg1_amax_thr, atot_thr=self.hitParam_alg1_atot_thr, \ son_min=self.hitParam_alg1_son_min) elif self.algorithm == 2: self.alg.set_peak_selection_pars(npix_min=self.hitParam_alg2_npix_min, npix_max=self.hitParam_alg2_npix_max, \ amax_thr=self.hitParam_alg2_amax_thr, atot_thr=self.hitParam_alg2_atot_thr, \ son_min=self.hitParam_alg2_son_min) elif self.algorithm == 3: self.alg.set_peak_selection_pars(npix_min=self.hitParam_alg3_npix_min, npix_max=self.hitParam_alg3_npix_max, \ amax_thr=self.hitParam_alg3_amax_thr, atot_thr=self.hitParam_alg3_atot_thr, \ son_min=self.hitParam_alg3_son_min) elif self.algorithm == 4: self.alg.set_peak_selection_pars(npix_min=self.hitParam_alg4_npix_min, npix_max=self.hitParam_alg4_npix_max, \ amax_thr=self.hitParam_alg4_amax_thr, atot_thr=self.hitParam_alg4_atot_thr, \ son_min=self.hitParam_alg4_son_min) self.algInitDone = True self.parent.calib = self.parent.calib * 1.0 # Neccessary when int is returned if self.algorithm == 1: # v1 - aka Droplet Finder - two-threshold peak-finding algorithm in restricted region # around pixel with maximal intensity. self.peakRadius = int(self.hitParam_alg1_radius) self.peaks = self.alg.peak_finder_v4r2(self.parent.calib, thr_low=self.hitParam_alg1_thr_low, thr_high=self.hitParam_alg1_thr_high, rank=int(self.hitParam_alg1_rank), r0=self.peakRadius, dr=self.hitParam_alg1_dr) elif self.algorithm == 2: # v2 - define peaks for regions of connected pixels above threshold self.peakRadius = int(self.hitParam_alg2_r0) self.peaks = self.alg.peak_finder_v2(self.parent.calib, thr=self.hitParam_alg2_thr, r0=self.peakRadius, dr=self.hitParam_alg2_dr) elif self.algorithm == 3: self.peakRadius = int(self.hitParam_alg3_r0) self.peaks = self.alg.peak_finder_v3(self.parent.calib, rank=self.hitParam_alg3_rank, r0=self.peakRadius, dr=self.hitParam_alg3_dr) elif self.algorithm == 4: # v4 - aka Droplet Finder - the same as v1, but uses rank and r0 parameters in stead of common radius. self.peakRadius = int(self.hitParam_alg4_r0) self.peaks = self.alg.peak_finder_v4(self.parent.calib, thr_low=self.hitParam_alg4_thr_low, thr_high=self.hitParam_alg4_thr_high, rank=self.hitParam_alg4_rank, r0=self.peakRadius, dr=self.hitParam_alg4_dr) self.numPeaksFound = self.peaks.shape[0] if self.parent.args.v >= 1: print "Num peaks found: ", self.numPeaksFound, self.peaks.shape # update clen self.parent.geom.updateClen('lcls') self.parent.index.clearIndexedPeaks() # Save image and peaks in cheetah cxi file self.saveCheetahFormat('lcls') if self.parent.index.showIndexedPeaks: self.parent.index.updateIndex() self.drawPeaks() if self.parent.args.v >= 1: print "Done updateClassification"
def __init__(self, source, monitor_params): super(Onda, self).__init__(map_func=self.process_data, reduce_func=self.collect_data, source=source, monitor_params=monitor_params) import psana self.npix_min, self.npix_max= monitor_params['Opal']['npix_min'],monitor_params['Opal']['npix_max'] self.amax_thr, self.atot_thr, self.son_min = monitor_params['Opal']['amax_thr'], monitor_params['Opal']['atot_thr'], monitor_params['Opal']['son_min'] self.thr_low, self.thr_high = monitor_params['Opal']['thr_low'], monitor_params['Opal']['thr_high'] self.rank, self.r0, self.dr = monitor_params['Opal']['rank'], monitor_params['Opal']['r0'], monitor_params['Opal']['dr'] self.e_center_x, self.e_center_y = monitor_params['Opal']['e_center_x'],monitor_params['Opal']['e_center_y'] print 'coin_point1' self.params_gen = monitor_params['General'] self.params_peakfinder_t, self.params_peakfinder_x, self.params_peakfinder_y = monitor_params['PeakFinderMcp'], monitor_params['PeakFinderX'], monitor_params['PeakFinderY'] self.params_hitfinder = monitor_params['HitFinder'] self.output_params = monitor_params['OutputLayer'] self.offset_acq = [0.01310443,0.02252858,0.02097541,0.01934959,-0.0001188] self.t_channel = monitor_params['DetectorLayer']['mcp_channel'] self.x1_channel = monitor_params['DetectorLayer']['x1_channel'] self.x2_channel = monitor_params['DetectorLayer']['x2_channel'] self.y1_channel = monitor_params['DetectorLayer']['y1_channel'] self.y2_channel = monitor_params['DetectorLayer']['y2_channel'] ################################################################# self.Xmin, self.Ymin, self.Tmin = monitor_params['OutputLayer']['xmin'],monitor_params['OutputLayer']['ymin'],monitor_params['OutputLayer']['tmin'] self.Xmax, self.Ymax, self.Tmax = monitor_params['OutputLayer']['xmax'],monitor_params['OutputLayer']['ymax'],monitor_params['OutputLayer']['tmax'] self.Xbin, self.Ybin, self.Tbin = monitor_params['OutputLayer']['xbin'],monitor_params['OutputLayer']['ybin'],monitor_params['OutputLayer']['tbin'] self.Xbinnum = int((self.Xmax - self.Xmin)/self.Xbin) self.Ybinnum = int((self.Ymax - self.Ymin)/self.Ybin) self.Tbinnum = int((self.Tmax - self.Tmin)/self.Tbin) self.Xaxis = np.linspace(self.Xmin, self.Xmax, self.Xbinnum) self.Yaxis = np.linspace(self.Ymin, self.Ymax, self.Ybinnum) self.Taxis = np.linspace(self.Tmin, self.Tmax, self.Tbinnum) self.Xaxis_r = self.Xaxis[::-1] self.Yaxis_r = self.Yaxis[::-1] self.Taxis_r = self.Taxis[::-1] self.XaxisM = (self.Xaxis[:-1] + self.Xaxis[1:])/2 self.YaxisM = (self.Yaxis[:-1] + self.Yaxis[1:])/2 self.TaxisM = (self.Taxis[:-1] + self.Taxis[1:])/2 self.eXmin, self.eYmin, self.eRmin, self.eAmin = monitor_params['OutputLayer']['exmin'],monitor_params['OutputLayer']['eymin'],monitor_params['OutputLayer']['ermin'],monitor_params['OutputLayer']['eamin'] self.eXmax, self.eYmax, self.eRmax, self.eAmax = monitor_params['OutputLayer']['exmax'],monitor_params['OutputLayer']['eymax'],monitor_params['OutputLayer']['ermax'],monitor_params['OutputLayer']['eamax'] self.eXbin, self.eYbin, self.eRbin, self.eAbin = monitor_params['OutputLayer']['exbin'],monitor_params['OutputLayer']['eybin'],monitor_params['OutputLayer']['erbin'],monitor_params['OutputLayer']['eabin'] self.photon_eng_bin, self.pulse_eng_bin = monitor_params['OutputLayer']['photon_eng_bin'],monitor_params['OutputLayer']['pulse_eng_bin'] self.photon_eng_min, self.pulse_eng_min = monitor_params['OutputLayer']['photon_eng_min'],monitor_params['OutputLayer']['pulse_eng_min'] self.photon_eng_max, self.pulse_eng_max = monitor_params['OutputLayer']['photon_eng_max'],monitor_params['OutputLayer']['pulse_eng_max'] self.photon_eng_binnum = int((self.photon_eng_max - self.photon_eng_min)/self.photon_eng_bin) self.pulse_eng_binnum = int((self.pulse_eng_max - self.pulse_eng_min)/self.pulse_eng_bin) self.photon_eng_axis = np.linspace(self.photon_eng_min, self.photon_eng_max, self.photon_eng_binnum) self.pulse_eng_axis = np.linspace(self.pulse_eng_min, self.pulse_eng_max, self.pulse_eng_binnum) self.eXbinnum = int((self.eXmax - self.eXmin)/self.eXbin) self.eYbinnum = int((self.eYmax - self.eYmin)/self.eYbin) self.eAbinnum = int((self.eAmax - self.eAmin)/self.eAbin) self.eRbinnum = int((self.eRmax - self.eRmin)/self.eRbin) print 'binnum:', self.eXbinnum, self.eYbinnum self.eXaxis = np.linspace(self.eXmin, self.eXmax, self.eXbinnum) self.eYaxis = np.linspace(self.eYmin, self.eYmax, self.eYbinnum) self.eAaxis = np.linspace(self.eAmin, self.eAmax, self.eAbinnum) self.eRaxis = np.linspace(self.eRmin, self.eRmax, self.eRbinnum) self.eXaxis_r = self.eXaxis[::-1] self.eYaxis_r = self.eYaxis[::-1] self.eAaxis_r = self.eAaxis[::-1] self.eRaxis_r = self.eRaxis[::-1] self.eXaxisM = (self.eXaxis[:-1] + self.eXaxis[1:])/2 self.eYaxisM = (self.eYaxis[:-1] + self.eYaxis[1:])/2 self.eAaxisM = (self.eAaxis[:-1] + self.eAaxis[1:])/2 self.eRaxisM = (self.eRaxis[:-1] + self.eRaxis[1:])/2 self.pho_pls_eng = np.zeros([self.photon_eng_binnum-1 , self.pulse_eng_binnum-1]) self.eXY = np.zeros([self.photon_eng_binnum-1 , self.pulse_eng_binnum-1, self.eXbinnum-1, self.eYbinnum-1]) self.eAR = np.zeros([self.photon_eng_binnum-1 , self.pulse_eng_binnum-1, self.eAbinnum-1, self.eRbinnum-1]) self.eA = np.zeros([self.photon_eng_binnum-1 , self.pulse_eng_binnum-1, self.eAbinnum-1]) self.eR = np.zeros([self.photon_eng_binnum-1 , self.pulse_eng_binnum-1, self.eRbinnum-1]) self.PeakFinderT = AcqirisPeakFinder(self.params_peakfinder_t) self.PeakFinderX = AcqirisPeakFinder(self.params_peakfinder_x) self.PeakFinderY = AcqirisPeakFinder(self.params_peakfinder_y) self.hit_list = [] self.HitFinder = BasicHitFinder(self.params_hitfinder) self.num_events_all = 0 self.mask = np.ones([1024,1024]) self.mask[350:650, 350:650] = 0 self.mask[:, :350] = 0 self.alg = PyAlgos() self.alg.set_peak_selection_pars(npix_min=self.npix_min, npix_max=self.npix_max, amax_thr=self.amax_thr, atot_thr=self.atot_thr, son_min=self.son_min) if self.role == 'master': self.collected_data = {} self.publish_ip = self.params_gen['publish_ip'] self.publish_port = self.params_gen['publish_port'] self.speed_rep_int = self.params_gen['speed_report_interval'] self.accumulated_shots = self.params_gen['accumulated_shots'] self.peaks_to_send_string = self.params_gen['peaks_to_send'].split(',') self.peaks_to_send = (int(self.peaks_to_send_string[0]), int(self.peaks_to_send_string[1])) print('Starting the monitor...') sys.stdout.flush() zmq_mon.init_zmq_to_gui(self, self.publish_ip, self.publish_port) self.num_events = 0 self.old_time = time.time() self.time = None self.data_accumulator = [] if self.role == 'worker': self.XYw = np.zeros([self.Xbinnum-1, self.Ybinnum-1]) self.eXYw = np.zeros([self.eXbinnum-1, self.eYbinnum-1]) self.eARw = np.zeros([self.eAbinnum-1, self.eRbinnum-1]) self.eRw = np.zeros([1, self.eRbinnum-1]) self.eAw = np.zeros([1, self.eAbinnum-1]) self.Tofw = np.zeros([1, self.Tbinnum-1]) self.XTw = np.zeros([self.Tbinnum-1, self.Xbinnum-1]) self.YTw = np.zeros([self.Tbinnum-1, self.Ybinnum-1]) self.TSumXw = np.zeros([self.Tbinnum-1,1]) self.TSumYw = np.zeros([self.Tbinnum-1,1]) self.PiPiCow = np.zeros([self.Tbinnum-2,self.Tbinnum-2]) self.results_dict = {} print('Starting worker: {0}.'.format(self.mpi_rank)) sys.stdout.flush() return
class Onda(MasterWorker): def __init__(self, source, monitor_params): super(Onda, self).__init__(map_func=self.process_data, reduce_func=self.collect_data, source=source, monitor_params=monitor_params) import psana self.npix_min, self.npix_max= monitor_params['Opal']['npix_min'],monitor_params['Opal']['npix_max'] self.amax_thr, self.atot_thr, self.son_min = monitor_params['Opal']['amax_thr'], monitor_params['Opal']['atot_thr'], monitor_params['Opal']['son_min'] self.thr_low, self.thr_high = monitor_params['Opal']['thr_low'], monitor_params['Opal']['thr_high'] self.rank, self.r0, self.dr = monitor_params['Opal']['rank'], monitor_params['Opal']['r0'], monitor_params['Opal']['dr'] self.e_center_x, self.e_center_y = monitor_params['Opal']['e_center_x'],monitor_params['Opal']['e_center_y'] print 'coin_point1' self.params_gen = monitor_params['General'] self.params_peakfinder_t, self.params_peakfinder_x, self.params_peakfinder_y = monitor_params['PeakFinderMcp'], monitor_params['PeakFinderX'], monitor_params['PeakFinderY'] self.params_hitfinder = monitor_params['HitFinder'] self.output_params = monitor_params['OutputLayer'] self.offset_acq = [0.01310443,0.02252858,0.02097541,0.01934959,-0.0001188] self.t_channel = monitor_params['DetectorLayer']['mcp_channel'] self.x1_channel = monitor_params['DetectorLayer']['x1_channel'] self.x2_channel = monitor_params['DetectorLayer']['x2_channel'] self.y1_channel = monitor_params['DetectorLayer']['y1_channel'] self.y2_channel = monitor_params['DetectorLayer']['y2_channel'] ################################################################# self.Xmin, self.Ymin, self.Tmin = monitor_params['OutputLayer']['xmin'],monitor_params['OutputLayer']['ymin'],monitor_params['OutputLayer']['tmin'] self.Xmax, self.Ymax, self.Tmax = monitor_params['OutputLayer']['xmax'],monitor_params['OutputLayer']['ymax'],monitor_params['OutputLayer']['tmax'] self.Xbin, self.Ybin, self.Tbin = monitor_params['OutputLayer']['xbin'],monitor_params['OutputLayer']['ybin'],monitor_params['OutputLayer']['tbin'] self.Xbinnum = int((self.Xmax - self.Xmin)/self.Xbin) self.Ybinnum = int((self.Ymax - self.Ymin)/self.Ybin) self.Tbinnum = int((self.Tmax - self.Tmin)/self.Tbin) self.Xaxis = np.linspace(self.Xmin, self.Xmax, self.Xbinnum) self.Yaxis = np.linspace(self.Ymin, self.Ymax, self.Ybinnum) self.Taxis = np.linspace(self.Tmin, self.Tmax, self.Tbinnum) self.Xaxis_r = self.Xaxis[::-1] self.Yaxis_r = self.Yaxis[::-1] self.Taxis_r = self.Taxis[::-1] self.XaxisM = (self.Xaxis[:-1] + self.Xaxis[1:])/2 self.YaxisM = (self.Yaxis[:-1] + self.Yaxis[1:])/2 self.TaxisM = (self.Taxis[:-1] + self.Taxis[1:])/2 self.eXmin, self.eYmin, self.eRmin, self.eAmin = monitor_params['OutputLayer']['exmin'],monitor_params['OutputLayer']['eymin'],monitor_params['OutputLayer']['ermin'],monitor_params['OutputLayer']['eamin'] self.eXmax, self.eYmax, self.eRmax, self.eAmax = monitor_params['OutputLayer']['exmax'],monitor_params['OutputLayer']['eymax'],monitor_params['OutputLayer']['ermax'],monitor_params['OutputLayer']['eamax'] self.eXbin, self.eYbin, self.eRbin, self.eAbin = monitor_params['OutputLayer']['exbin'],monitor_params['OutputLayer']['eybin'],monitor_params['OutputLayer']['erbin'],monitor_params['OutputLayer']['eabin'] self.photon_eng_bin, self.pulse_eng_bin = monitor_params['OutputLayer']['photon_eng_bin'],monitor_params['OutputLayer']['pulse_eng_bin'] self.photon_eng_min, self.pulse_eng_min = monitor_params['OutputLayer']['photon_eng_min'],monitor_params['OutputLayer']['pulse_eng_min'] self.photon_eng_max, self.pulse_eng_max = monitor_params['OutputLayer']['photon_eng_max'],monitor_params['OutputLayer']['pulse_eng_max'] self.photon_eng_binnum = int((self.photon_eng_max - self.photon_eng_min)/self.photon_eng_bin) self.pulse_eng_binnum = int((self.pulse_eng_max - self.pulse_eng_min)/self.pulse_eng_bin) self.photon_eng_axis = np.linspace(self.photon_eng_min, self.photon_eng_max, self.photon_eng_binnum) self.pulse_eng_axis = np.linspace(self.pulse_eng_min, self.pulse_eng_max, self.pulse_eng_binnum) self.eXbinnum = int((self.eXmax - self.eXmin)/self.eXbin) self.eYbinnum = int((self.eYmax - self.eYmin)/self.eYbin) self.eAbinnum = int((self.eAmax - self.eAmin)/self.eAbin) self.eRbinnum = int((self.eRmax - self.eRmin)/self.eRbin) print 'binnum:', self.eXbinnum, self.eYbinnum self.eXaxis = np.linspace(self.eXmin, self.eXmax, self.eXbinnum) self.eYaxis = np.linspace(self.eYmin, self.eYmax, self.eYbinnum) self.eAaxis = np.linspace(self.eAmin, self.eAmax, self.eAbinnum) self.eRaxis = np.linspace(self.eRmin, self.eRmax, self.eRbinnum) self.eXaxis_r = self.eXaxis[::-1] self.eYaxis_r = self.eYaxis[::-1] self.eAaxis_r = self.eAaxis[::-1] self.eRaxis_r = self.eRaxis[::-1] self.eXaxisM = (self.eXaxis[:-1] + self.eXaxis[1:])/2 self.eYaxisM = (self.eYaxis[:-1] + self.eYaxis[1:])/2 self.eAaxisM = (self.eAaxis[:-1] + self.eAaxis[1:])/2 self.eRaxisM = (self.eRaxis[:-1] + self.eRaxis[1:])/2 self.pho_pls_eng = np.zeros([self.photon_eng_binnum-1 , self.pulse_eng_binnum-1]) self.eXY = np.zeros([self.photon_eng_binnum-1 , self.pulse_eng_binnum-1, self.eXbinnum-1, self.eYbinnum-1]) self.eAR = np.zeros([self.photon_eng_binnum-1 , self.pulse_eng_binnum-1, self.eAbinnum-1, self.eRbinnum-1]) self.eA = np.zeros([self.photon_eng_binnum-1 , self.pulse_eng_binnum-1, self.eAbinnum-1]) self.eR = np.zeros([self.photon_eng_binnum-1 , self.pulse_eng_binnum-1, self.eRbinnum-1]) self.PeakFinderT = AcqirisPeakFinder(self.params_peakfinder_t) self.PeakFinderX = AcqirisPeakFinder(self.params_peakfinder_x) self.PeakFinderY = AcqirisPeakFinder(self.params_peakfinder_y) self.hit_list = [] self.HitFinder = BasicHitFinder(self.params_hitfinder) self.num_events_all = 0 self.mask = np.ones([1024,1024]) self.mask[350:650, 350:650] = 0 self.mask[:, :350] = 0 self.alg = PyAlgos() self.alg.set_peak_selection_pars(npix_min=self.npix_min, npix_max=self.npix_max, amax_thr=self.amax_thr, atot_thr=self.atot_thr, son_min=self.son_min) if self.role == 'master': self.collected_data = {} self.publish_ip = self.params_gen['publish_ip'] self.publish_port = self.params_gen['publish_port'] self.speed_rep_int = self.params_gen['speed_report_interval'] self.accumulated_shots = self.params_gen['accumulated_shots'] self.peaks_to_send_string = self.params_gen['peaks_to_send'].split(',') self.peaks_to_send = (int(self.peaks_to_send_string[0]), int(self.peaks_to_send_string[1])) print('Starting the monitor...') sys.stdout.flush() zmq_mon.init_zmq_to_gui(self, self.publish_ip, self.publish_port) self.num_events = 0 self.old_time = time.time() self.time = None self.data_accumulator = [] if self.role == 'worker': self.XYw = np.zeros([self.Xbinnum-1, self.Ybinnum-1]) self.eXYw = np.zeros([self.eXbinnum-1, self.eYbinnum-1]) self.eARw = np.zeros([self.eAbinnum-1, self.eRbinnum-1]) self.eRw = np.zeros([1, self.eRbinnum-1]) self.eAw = np.zeros([1, self.eAbinnum-1]) self.Tofw = np.zeros([1, self.Tbinnum-1]) self.XTw = np.zeros([self.Tbinnum-1, self.Xbinnum-1]) self.YTw = np.zeros([self.Tbinnum-1, self.Ybinnum-1]) self.TSumXw = np.zeros([self.Tbinnum-1,1]) self.TSumYw = np.zeros([self.Tbinnum-1,1]) self.PiPiCow = np.zeros([self.Tbinnum-2,self.Tbinnum-2]) self.results_dict = {} print('Starting worker: {0}.'.format(self.mpi_rank)) sys.stdout.flush() return def cart2polar_img(self, x, y, intensity): x1 = x-self.e_center_x y1 = y-self.e_center_y r = np.sqrt(x1**2 + y1**2) angle = np.arctan2(y1, x1) return r, angle, intensity*r def cart2polar(self, x, y): x1 = x-self.e_center_x y1 = y-self.e_center_y r = np.sqrt(x1**2 + y1**2) angle = np.arctan2(y1, x1) return r, angle def process_data(self): self.results_dict = {} MCPinds = [] Tofinds = [] Xinds = [] Yinds =[] eXinds = [] eYinds = [] eAinds = [] eRinds = [] eXinds_f = [] eYinds_f = [] eAinds_f = [] eRinds_f = [] pulse_eng_ind = 0 photon_eng_ind = 0 self.acqiris_data_wf[2:7] = self.acqiris_data_wf[2:7] - np.mean(self.acqiris_data_wf[2:7,self.acqiris_data_wt[6,:]>10000], axis=1)[:,np.newaxis] self.acqiris_data_wf[self.t_channel] = -self.acqiris_data_wf[self.t_channel] t_peaks = np.array(self.PeakFinderT.cfd(self.acqiris_data_wf[self.t_channel],self.acqiris_data_wt[self.t_channel])) x1_peaks = np.array(self.PeakFinderX.cfd(self.acqiris_data_wf[self.x1_channel],self.acqiris_data_wt[self.x1_channel])) x2_peaks = np.array(self.PeakFinderX.cfd(self.acqiris_data_wf[self.x2_channel],self.acqiris_data_wt[self.x2_channel])) y1_peaks = np.array(self.PeakFinderY.cfd(self.acqiris_data_wf[self.y1_channel],self.acqiris_data_wt[self.y1_channel])) y2_peaks = np.array(self.PeakFinderY.cfd(self.acqiris_data_wf[self.y2_channel],self.acqiris_data_wt[self.y2_channel])) e_peaks = self.alg.peak_finder_v4r2(self.eImage, thr_low=self.thr_low, thr_high=self.thr_high, rank=self.rank, r0=self.r0, dr=self.dr) self.num_events_all += 1 if (0==1) and self.num_events_all == 60: self.results_dict['acq'] = (self.acqiris_data_wt, self.acqiris_data_wf) self.results_dict['t_peaks'] = t_peaks self.results_dict['x1_peaks'] = x1_peaks self.results_dict['x2_peaks'] = x2_peaks self.results_dict['y1_peaks'] = y1_peaks self.results_dict['y2_peaks'] = y2_peaks else: self.results_dict['acq'] = None for t_peak in t_peaks: MCPinds.append(next((MCP_ind for MCP_ind, MCP_ele in enumerate(self.Taxis) if MCP_ele > t_peak),0)) ion_hits = self.HitFinder.FindHits(t_peaks, x1_peaks, x2_peaks, y1_peaks, y2_peaks) if (0==1): self.results_dict['ion_hits'] = ion_hits eXs = e_peaks[:,1].astype(int) eYs = e_peaks[:,2].astype(int) eRadius, eAngle =self.cart2polar(eXs, eYs) for ion_hit in ion_hits: Tofinds.append(next((Tof_ind for Tof_ind, Tof_ele in enumerate(self.Taxis) if Tof_ele > ion_hit[0]),0)) Xinds.append(next((X_ind for X_ind, X_ele in enumerate(self.Xaxis) if X_ele > ion_hit[1]),0)) Yinds.append(next((Y_ind for Y_ind, Y_ele in enumerate(self.Yaxis) if Y_ele > ion_hit[2]),0)) for e_ind in range(len(eXs)): tempRind = next((eR_ind for eR_ind, eR_ele in enumerate(self.eRaxis) if eR_ele > eRadius[e_ind]),0) tempAind = next((eA_ind for eA_ind, eA_ele in enumerate(self.eAaxis) if eA_ele > eAngle[e_ind]),0) tempXind = next((eX_ind for eX_ind, eX_ele in enumerate(self.eXaxis) if eX_ele > eXs[e_ind]),0) tempYind = next((eY_ind for eY_ind, eY_ele in enumerate(self.eYaxis) if eY_ele > eYs[e_ind]),0) eRinds.append(tempRind) eAinds.append(tempAind) eXinds.append(tempXind) eYinds.append(tempYind) if not (eRadius[e_ind] > 172.2 and eRadius[e_ind] < 361 and eAngle[e_ind] > -2.5 and eAngle[e_ind] < -0.8): if eRadius[e_ind] > 100: eRinds_f.append(tempRind) eAinds_f.append(tempAind) eXinds_f.append(tempXind) eYinds_f.append(tempYind) pulse_eng_ind = next((pls_eng_ind for pls_eng_ind, pls_eng_ele in enumerate(self.pulse_eng_axis) if pls_eng_ele > self.pulse_eng),0) photon_eng_ind = next((pho_eng_ind for pho_eng_ind, pho_eng_ele in enumerate(self.photon_eng_axis) if pho_eng_ele > self.photon_eng),0) self.results_dict['t_peaks'] = MCPinds self.results_dict['ion'] = {'Xinds': Xinds, 'Yinds': Yinds, 'Tofinds': Tofinds} self.results_dict['e'] = {'eXinds': eXinds, 'eYinds': eYinds, 'eRinds': eRinds, 'eAinds': eAinds, 'eXinds_f': eXinds_f, 'eYinds_f': eYinds_f, 'eRinds_f': eRinds_f, 'eAinds_f': eAinds_f} self.results_dict['beam'] = {'pulse_eng_ind': pulse_eng_ind, 'photon_eng_ind': photon_eng_ind} return self.results_dict, self.mpi_rank def collect_data_offline(self, new): self.collected_data = {} self.collected_data, _ = new if len(self.collected_data['ion']['Xinds']) > 0 and len(self.collected_data['e']['Xinds']) > 0 and len(self.collected_data['beam']['pulse_eng_ind']) > 0 and len(self.collected_data['beam']['photon_eng_ind']) > 0: self.num_events += 1 if self.num_events % self.speed_rep_int == 0: self.time = time.time() print('Processed: {0} in {1:.2f} seconds ({2:.2f} Hz)'.format( self.num_events, self.time - self.old_time, float(self.speed_rep_int)/float(self.time-self.old_time))) sys.stdout.flush() self.old_time = self.time if self.num_events == self.output_params['max_events'] : self.shutdown(msg='maximum number of events reached.') return def collect_data(self, new): self.collected_data = {} self.collected_data, _ = new if len(self.collected_data['ion']['Xinds']) > 0 and len(self.collected_data['e']['Xinds']) > 0 and len(self.collected_data['beam']['pulse_eng_ind']) > 0 and len(self.collected_data['beam']['photon_eng_ind']) > 0: self.zmq_publish.send(b'coin_data', zmq.SNDMORE) self.zmq_publish.send_pyobj(self.collected_data) self.num_events += 1 if self.num_events % self.speed_rep_int == 0: self.time = time.time() print('Processed: {0} in {1:.2f} seconds ({2:.2f} Hz)'.format( self.num_events, self.time - self.old_time, float(self.speed_rep_int)/float(self.time-self.old_time))) sys.stdout.flush() self.old_time = self.time if self.num_events == self.output_params['max_events'] : self.shutdown(msg='maximum number of events reached.') return
import psana ds = psana.DataSource('exp=xpptut15:run=54:smd') det = psana.Detector('cspad') from ImgAlgos.PyAlgos import PyAlgos alg = PyAlgos() alg.set_peak_selection_pars(npix_min=2, npix_max=50, amax_thr=10, atot_thr=20, son_min=5) hdr = '\nSeg Row Col Npix Amptot' fmt = '%3d %4d %4d %4d %8.1f' for nevent,evt in enumerate(ds.events()): if nevent>=2 : break nda = det.calib(evt) if nda is None: continue peaks = alg.peak_finder_v1(nda, thr_low=5, thr_high=21, radius=5, dr=0.05) print hdr for peak in peaks : seg,row,col,npix,amax,atot = peak[0:6] print fmt % (seg, row, col, npix, atot)
def __init__(self,exp,run,detname,evt,detector,algorithm,hitParam_alg_npix_min,hitParam_alg_npix_max, hitParam_alg_amax_thr,hitParam_alg_atot_thr,hitParam_alg_son_min, streakMask_on,streakMask_sigma,streakMask_width,userMask_path,psanaMask_on,psanaMask_calib, psanaMask_status,psanaMask_edges,psanaMask_central,psanaMask_unbond,psanaMask_unbondnrs, medianFilterOn=0, medianRank=5, radialFilterOn=0, distance=0.0, windows=None, **kwargs): self.exp = exp self.run = run self.detname = detname self.det = detector self.algorithm = algorithm self.maxRes = 0 self.npix_min=hitParam_alg_npix_min self.npix_max=hitParam_alg_npix_max self.amax_thr=hitParam_alg_amax_thr self.atot_thr=hitParam_alg_atot_thr self.son_min=hitParam_alg_son_min self.streakMask_on = str2bool(streakMask_on) self.streakMask_sigma = streakMask_sigma self.streakMask_width = streakMask_width self.userMask_path = userMask_path self.psanaMask_on = str2bool(psanaMask_on) self.psanaMask_calib = str2bool(psanaMask_calib) self.psanaMask_status = str2bool(psanaMask_status) self.psanaMask_edges = str2bool(psanaMask_edges) self.psanaMask_central = str2bool(psanaMask_central) self.psanaMask_unbond = str2bool(psanaMask_unbond) self.psanaMask_unbondnrs = str2bool(psanaMask_unbondnrs) self.medianFilterOn = medianFilterOn self.medianRank = medianRank self.radialFilterOn = radialFilterOn self.distance = distance self.windows = windows self.userMask = None self.psanaMask = None self.streakMask = None self.userPsanaMask = None self.combinedMask = None # Make user mask if self.userMask_path is not None: self.userMask = np.load(self.userMask_path) # Make psana mask if self.psanaMask_on: self.psanaMask = detector.mask(evt, calib=self.psanaMask_calib, status=self.psanaMask_status, edges=self.psanaMask_edges, central=self.psanaMask_central, unbond=self.psanaMask_unbond, unbondnbrs=self.psanaMask_unbondnrs) # Combine userMask and psanaMask self.userPsanaMask = np.ones_like(self.det.calib(evt)) if self.userMask is not None: self.userPsanaMask *= self.userMask if self.psanaMask is not None: self.userPsanaMask *= self.psanaMask # Powder of hits and misses self.powderHits = np.zeros_like(self.userPsanaMask) self.powderMisses = np.zeros_like(self.userPsanaMask) self.alg = PyAlgos(windows=self.windows, mask=self.userPsanaMask, pbits=0) # set peak-selector parameters: self.alg.set_peak_selection_pars(npix_min=self.npix_min, npix_max=self.npix_max, \ amax_thr=self.amax_thr, atot_thr=self.atot_thr, \ son_min=self.son_min) # set algorithm specific parameters if algorithm == 1: self.hitParam_alg1_thr_low = kwargs["alg1_thr_low"] self.hitParam_alg1_thr_high = kwargs["alg1_thr_high"] self.hitParam_alg1_rank = int(kwargs["alg1_rank"]) self.hitParam_alg1_radius = int(kwargs["alg1_radius"]) self.hitParam_alg1_dr = kwargs["alg1_dr"] elif algorithm == 3: self.hitParam_alg3_rank = kwargs["alg3_rank"] self.hitParam_alg3_r0 = int(kwargs["alg3_r0"]) self.hitParam_alg3_dr = kwargs["alg3_dr"] elif algorithm == 4: self.hitParam_alg4_thr_low = kwargs["alg4_thr_low"] self.hitParam_alg4_thr_high = kwargs["alg4_thr_high"] self.hitParam_alg4_rank = int(kwargs["alg4_rank"]) self.hitParam_alg4_r0 = int(kwargs["alg4_r0"]) self.hitParam_alg4_dr = kwargs["alg4_dr"] self.maxNumPeaks = 2048 self.StreakMask = myskbeam.StreakMask(self.det, evt, width=self.streakMask_width, sigma=self.streakMask_sigma) self.cx, self.cy = self.det.point_indexes(evt, pxy_um=(0, 0)) self.iX = np.array(self.det.indexes_x(evt), dtype=np.int64) self.iY = np.array(self.det.indexes_y(evt), dtype=np.int64) if len(self.iX.shape) == 2: self.iX = np.expand_dims(self.iX, axis=0) self.iY = np.expand_dims(self.iY, axis=0) # Initialize radial background subtraction self.setupExperiment() if self.radialFilterOn: self.setupRadialBackground() self.updatePolarizationFactor()
winds_bkgd = [(s, 10, 100, 270, 370) for s in (4,12,20,28)] # use part of segments 4 and 20 to subtr bkgd winds_arc = [(s, 0, 185, 0, 388) for s in (0,7,8,15)] winds_equ = [(s, 0, 185, 0, 388) for s in (0,1,9,15,16,17,25,31)] winds_tot = [(s, 0, 185, 0, 388) for s in (0,1,7,8,9,15,16,17,23,24,25,31)] mask_winds_tot = np.zeros(shape_cspad, dtype=np.int16) mask_winds_tot[(0,1,7,8,9,15,16,17,23,24,25,31),:,:] = seg1 #mask_winds_equ[(0,1,9,15,16,17,25,31),:,:] = seg1 #mask_winds_arc[(0,7,8,15),:,:] = seg1 print_arr(winds_arc, 'winds_arc') print_arr_attr(winds_arc, 'winds_arc') alg_arc = PyAlgos(windows=winds_arc, mask=mask_arc, pbits=2) alg_arc.set_peak_selection_pars(npix_min=0, npix_max=1e6, amax_thr=0, atot_thr=0, son_min=10) #alg_arc.set_peak_selection_pars(npix_min=0, npix_max=1e6, amax_thr=0, atot_thr=500, son_min=6) # for v2r1 alg_equ = PyAlgos(windows=winds_equ, mask=mask_equ, pbits=0) alg_equ.set_peak_selection_pars(npix_min=0, npix_max=1e6, amax_thr=0, atot_thr=0, son_min=10) #alg_equ.set_peak_selection_pars(npix_min=0, npix_max=1e6, amax_thr=0, atot_thr=500, son_min=6) # for v2r1 #alg_equ.print_attributes() #alg_equ.print_input_pars() ##----------------------------- xoffset, yoffset = 300, 300 xsize, ysize = 1150, 1150
class MCPGate(): def __init__(self, parent, gateName, tofs, tofl,tofs_dict,tofl_dict): self.parent = parent self.gateName = gateName self.tofs = tofs self.tofl = tofl self.tofs_dict = tofs_dict self.tofl_dict = tofl_dict self.tofbin = self.parent.monitor_params['t']['bin'] print self.tofs_dict,self.tofl_dict self.tof_ind = (self.parent.TaxisM>self.tofs) & (self.parent.TaxisM<self.tofl) self.particle = self.gateName self.extractE = extractE self.alg = PyAlgos() self.alg.set_peak_selection_pars(npix_min=self.parent.npix_min, npix_max=self.parent.npix_max, amax_thr=self.parent.amax_thr, atot_thr=self.parent.atot_thr, son_min=self.parent.son_min) self.init_vars() def init_vars(self): self.P = {} for pt in ['2n1','n1','n2','n3','n4']: self.P[pt] = 0 self.temp_irun = -1 self.tempXef1 = [] self.tempYef1 = [] self.tempXef2 = [] self.tempYef2 = [] self.tempErf1 = [] self.tempErf2 = [] self.hists_tof = {} self.hists_tof_all = {} for hist_name in self.parent.hist_names_mcp: if hist_name == 'frag_stat': x_name = self.parent.monitor_params[hist_name]['x'] x_binnum = self.parent.monitor_params[x_name]['num'] y_name = self.parent.monitor_params[hist_name]['y'] y_binnum = self.parent.monitor_params[y_name]['num'] z_name = self.parent.monitor_params[hist_name]['z'] z_binnum = self.parent.monitor_params[z_name]['num'] m_name = self.parent.monitor_params[hist_name]['m'] m_binnum = self.parent.monitor_params[m_name]['num'] n_name = self.parent.monitor_params[hist_name]['n'] n_binnum = self.parent.monitor_params[n_name]['num'] self.hists_tof[hist_name] = np.zeros([x_binnum, y_binnum, z_binnum, m_binnum, n_binnum]) if self.parent.role == 'master': self.hists_tof_all[hist_name] = np.zeros([x_binnum, y_binnum, z_binnum, m_binnum, n_binnum]) else: self.hists_tof_all[hist_name] = None continue x_name = self.parent.monitor_params[hist_name]['x'] x_binnum = self.parent.vars_binnum[x_name] if 'y' in self.parent.monitor_params[hist_name].keys(): y_name = self.parent.monitor_params[hist_name]['y'] y_binnum = self.parent.vars_binnum[y_name] if 'z' in self.parent.monitor_params[hist_name].keys(): z_name = self.parent.monitor_params[hist_name]['z'] z_binnum = self.parent.vars_binnum[z_name] self.hists_tof[hist_name] = np.zeros([x_binnum-1, y_binnum-1, z_binnum-1]) if self.parent.role == 'master': self.hists_tof_all[hist_name] = np.zeros([x_binnum-1, y_binnum-1, z_binnum-1]) else: self.hists_tof_all[hist_name] = None else: self.hists_tof[hist_name] = np.zeros([x_binnum-1, y_binnum-1]) if self.parent.role == 'master': self.hists_tof_all[hist_name] = np.zeros([x_binnum-1, y_binnum-1]) else: self.hists_tof_all[hist_name] = None else: self.hists_tof[hist_name] = np.zeros([x_binnum-1]) if self.parent.role == 'master': self.hists_tof_all[hist_name] = np.zeros([x_binnum-1]) else: self.hists_tof_all[hist_name] = None def update_electron(self, eAind, eRind, eXind, eYind): pass def update_ion(self,Tofele): for pt in ['2n1','n1','n2','n3','n4']: if (Tofele > self.tofs_dict[pt] and Tofele < self.tofl_dict[pt]): self.P[pt] += 1 break def is_coin(self): # a = 0 # for pt in ['2n1','n1','n2','n3','n4']: # a += self.P[pt] return True def update_shotinfo(self, pho_ind, pls_ind): # if self.parent.mpi_rank == 0: # print 'MCP***********************update',self.P self.hists_tof['frag_stat'][min(self.P['2n1'],9),min(self.P['n1'],9),min(self.P['n2'],9),min(self.P['n3'],9),min(self.P['n4'],9)] += 1 def reset_coin_var(self): # if self.parent.mpi_rank == 0: # print 'MCP**********************reset',self.P for pt in ['2n1','n1','n2','n3','n4']: self.P[pt] = 0 def save_var(self, h5f): grp = h5f.create_group('MCPGate_'+self.gateName) grp.create_dataset('gateInfo_tofs_tofl_tofbin', data=np.array([self.tofs,self.tofl,self.tofbin])) for histname in self.parent.hist_names_mcp: try: grp.create_dataset(histname,data = self.hists_tof_all[histname]) except Exception as e: print(histname+' failed to be saved.') print(e) def reduce(self): for histname in self.parent.hist_names_mcp: try: self.time_a = time.time() MPI.COMM_WORLD.Reduce(self.hists_tof[histname],self.hists_tof_all[histname]) self.time_b = time.time() print(histname+' reduced by '+'Rank {0} in {1:.2f} seconds'.format(self.parent.mpi_rank,self.time_b - self.time_a)) except Exception as e: print(histname+' failed to be redueced by '+str(self.parent.mpi_rank)) print(e)
class Coin(Workers): def init_params(self,monitor_params): self.npix_min, self.npix_max= monitor_params['Opal']['npix_min'],monitor_params['Opal']['npix_max'] self.amax_thr, self.atot_thr, self.son_min = monitor_params['Opal']['amax_thr'], monitor_params['Opal']['atot_thr'], monitor_params['Opal']['son_min'] self.thr_low, self.thr_high = monitor_params['Opal']['thr_low'], monitor_params['Opal']['thr_high'] self.rank, self.r0, self.dr = monitor_params['Opal']['rank'], monitor_params['Opal']['r0'], monitor_params['Opal']['dr'] self.eimg_center_x, self.eimg_center_y = monitor_params['Opal']['eimg_center_x'],monitor_params['Opal']['eimg_center_y'] self.e_radius = monitor_params['Opal']['e_radius'] self.params_gen = monitor_params['General'] self.output_path = monitor_params['OutputLayer']['output_path'] ################################################################# self.output_params = monitor_params['OutputLayer'] self.vars = monitor_params['OutputLayer']['vars'].split(',') self.hist_names_all = monitor_params['OutputLayer']['hist_names_all'].split(',') self.hist1_names_all = monitor_params['OutputLayer']['hist1_names_all'].split(',') #self.vars_min = {}; self.vars_max = {}; self.vars_bin= {}; self.vars_binnum = {}; self.vars_axis={} self.hists_all = {} self.hists_all_all = {} for var in self.vars: var_min= monitor_params[var]['min'] var_max = monitor_params[var]['max'] var_bin = monitor_params[var]['bin'] var_binnum = int((var_max - var_min)/var_bin)+1 self.vars_binnum[var] = var_binnum self.vars_axis[var] = np.linspace(var_min, var_max, var_binnum) for hist_name in self.hist_names_all: if hist_name=='pipico': x_name = self.monitor_params[hist_name]['x'] x_binnum = self.vars_binnum[x_name] y_name = self.monitor_params[hist_name]['y'] y_binnum = self.vars_binnum[y_name] self.hists_all[hist_name] = np.zeros([x_binnum-2, y_binnum-2]) if self.role == 'master': self.hists_all_all[hist_name] = np.zeros([x_binnum-2, y_binnum-2]) else: self.hists_all_all[hist_name] = None continue x_name = self.monitor_params[hist_name]['x'] x_binnum = self.vars_binnum[x_name] if 'y' in self.monitor_params[hist_name].keys(): y_name = self.monitor_params[hist_name]['y'] y_binnum = self.vars_binnum[y_name] if 'z' in self.monitor_params[hist_name].keys(): z_name = self.monitor_params[hist_name]['z'] z_binnum = self.vars_binnum[z_name] self.hists_all[hist_name] = np.zeros([x_binnum-1, y_binnum-1, z_binnum-1]) if self.role == 'master': self.hists_all_all[hist_name] = np.zeros([x_binnum-1, y_binnum-1, z_binnum-1]) else: self.hists_all_all[hist_name] = None else: self.hists_all[hist_name] = np.zeros([x_binnum-1, y_binnum-1]) if self.role == 'master': self.hists_all_all[hist_name] = np.zeros([x_binnum-1, y_binnum-1]) else: self.hists_all_all[hist_name] = None else: self.hists_all[hist_name] = np.zeros([x_binnum-1]) if self.role == 'master': self.hists_all_all[hist_name] = np.zeros([x_binnum-1]) else: self.hists_all_all[hist_name] = None # print self.hists_all[hist_name].dtype,self.hists_all_all[hist_name].dtype for hist1_name in self.hist1_names_all: # print 'hist1_name',hist1_name self.hists_all[hist1_name] = np.array([0],dtype=np.float64) if self.role == 'master': self.hists_all_all[hist1_name] = np.array([0],dtype=np.float64) else: self.hists_all_all[hist1_name] = None self.hist_names_all.append(hist1_name) # print self.hists_all[hist_name].dtype,self.hists_all_all[hist_name].dtype def __init__(self, source, monitor_params): super(Coin, self).__init__(map_func=self.process_data, reduce_func=self.reduce,save_func=self.save_data, source=source, monitor_params=monitor_params) import psana self.monitor_params = monitor_params self.init_params(monitor_params) self.e_cols = self.eimg_center_y - self.e_radius self.e_coll = self.eimg_center_y + self.e_radius+1 self.e_rows = self.eimg_center_x - self.e_radius self.e_rowl = self.eimg_center_x + self.e_radius+1 self.e_center_y = self.eimg_center_y self.e_center_x = self.eimg_center_x self.mask = np.ones([1024,1024]) self.mask[350:650, 350:650] = 0 self.mask[:, :350] = 0 #self.alg = PyAlgos(mask = self.mask) self.alg = PyAlgos() self.alg.set_peak_selection_pars(npix_min=self.npix_min, npix_max=self.npix_max, amax_thr=self.amax_thr, atot_thr=self.atot_thr, son_min=self.son_min) self.speed_rep_int = self.params_gen['speed_report_interval'] self.old_time = time.time() self.time = None print('Starting worker: {0}.'.format(self.mpi_rank)) sys.stdout.flush() return def cart2polar_img(self, x, y, intensity): x1 = x-self.e_center_x y1 = y-self.e_center_y r = np.sqrt(x1**2 + y1**2) angle = np.arctan2(y1, x1) return r, angle, intensity*r def cart2polar(self, x, y): x1 = x-self.e_center_x y1 = y-self.e_center_y r = np.sqrt(x1**2 + y1**2) angle = np.arctan2(y1, x1) return r, angle def process_data(self): self.pls_ind = next((pls_eng_ind for pls_eng_ind, pls_eng_ele in enumerate(self.vars_axis['plseng']) if pls_eng_ele > self.pulse_eng),0)-1 self.pho_ind = next((pho_eng_ind for pho_eng_ind, pho_eng_ele in enumerate(self.vars_axis['phoeng']) if pho_eng_ele > self.photon_eng),0)-1 self.ebm_ind = next((ebm_eng_ind for ebm_eng_ind, ebm_eng_ele in enumerate(self.vars_axis['ebmeng']) if ebm_eng_ele > self.ebeam_eng),0)-1 # self.hists_all['num_events'][0] += 1 if (self.ebm_ind != -1 and self.pls_ind != -1): self.sortDataE(self.ebm_ind) self.hists_all['ebm_pls_eng'][self.ebm_ind, self.pls_ind] += 1 if self.pho_ind != -1: self.hists_all['ebm_pho_eng'][self.ebm_ind, self.pho_ind] += 1 self.hists_all['num_events'][0] += 1 # print self.mpi_rank, self.hists_all['num_events'][0] if self.role == 'master' and (self.hists_all['num_events'][0]*self.mpi_size) % self.speed_rep_int == 0: self.time = time.time() print('Processed: {0} in {1:.2f} seconds ({2:.2f} Hz)'.format( self.mpi_size*self.hists_all['num_events'][0], self.time - self.old_time, float(self.speed_rep_int)/float(self.time-self.old_time))) sys.stdout.flush() self.old_time = self.time if self.role == 'master' and self.mpi_size*self.hists_all['num_events'][0] == self.output_params['max_events'] : self.save_data() self.shutdown(msg='maximum number of events reached.') return def sortDataE(self,ebm_ind): e_peaks = self.alg.peak_finder_v4r2(self.eImage, thr_low=self.thr_low, thr_high=self.thr_high, rank=self.rank, r0=self.r0, dr=self.dr) eXs = e_peaks[:,1].astype(int) eYs = e_peaks[:,2].astype(int) eRadius, eAngle =self.cart2polar(eXs, eYs) for e_ind in range(len(eXs)): tempXind = next((eX_ind for eX_ind, eX_ele in enumerate(self.vars_axis['ex']) if eX_ele > eXs[e_ind]),0)-1 tempYind = next((eY_ind for eY_ind, eY_ele in enumerate(self.vars_axis['ey']) if eY_ele > eYs[e_ind]),0)-1 if tempXind != -1 and tempYind != -1: self.hists_all['ebm_ex_ey'][ebm_ind,tempXind, tempYind] += 1 def sortDataIon(self): self.tof_inds = [] self.acqiris_data_wf[2:7] = self.acqiris_data_wf[2:7] - np.mean(self.acqiris_data_wf[2:7,self.acqiris_data_wt[6,:]>8000], axis=1)[:,np.newaxis] #self.acqiris_data_wf[self.t_channel] = -self.acqiris_data_wf[self.t_channel] t_peaks = np.array(self.PeakFinderT.cfd(self.acqiris_data_wf[self.t_channel],self.acqiris_data_wt[self.t_channel])) if len(t_peaks) > 0: # for t_peak in t_peaks: # tempMCPind = next((MCP_ind for MCP_ind, MCP_ele in enumerate(self.vars_axis['t']) if MCP_ele > t_peak),0)-1 # if tempMCPind != -1: # self.MCPTof[tempMCPind] += 1 # self.updateMCPGatesIon(tempMCPind) x1_peaks = np.array(self.PeakFinderX.cfd(self.acqiris_data_wf[self.x1_channel],self.acqiris_data_wt[self.x1_channel])) x2_peaks = np.array(self.PeakFinderX.cfd(self.acqiris_data_wf[self.x2_channel],self.acqiris_data_wt[self.x2_channel])) y1_peaks = np.array(self.PeakFinderY.cfd(self.acqiris_data_wf[self.y1_channel],self.acqiris_data_wt[self.y1_channel])) y2_peaks = np.array(self.PeakFinderY.cfd(self.acqiris_data_wf[self.y2_channel],self.acqiris_data_wt[self.y2_channel])) # [(mcp_peak, (x, y,), (x1, x2, y1, y2)), ...] ion_hits = self.HitFinder.FindHits(t_peaks, x1_peaks, x2_peaks, y1_peaks, y2_peaks) for ion_hit in ion_hits: tempTofind = next((Tof_ind for Tof_ind, Tof_ele in enumerate(self.vars_axis['t']) if Tof_ele > ion_hit[0]),0)-1 tempXind = next((X_ind for X_ind, X_ele in enumerate(self.vars_axis['x']) if X_ele > ion_hit[1]),0)-1 tempYind = next((Y_ind for Y_ind, Y_ele in enumerate(self.vars_axis['y']) if Y_ele > ion_hit[2]),0)-1 if tempTofind != -1 and tempXind != -1 and tempYind != -1: self.tof_inds.append(tempTofind) self.hists_all['t_'][tempTofind] += 1 self.hists_all['x_y'][tempXind, tempYind] += 1 # self.XT[tempTofind, tempXind] += 1 # self.YT[tempTofind, tempYind] += 1 self.updateTofGatesIon(tempTofind, tempXind, tempYind, ion_hit[0], ion_hit[1], ion_hit[2]) self.updatePiPiCoGatesIon(tempTofind, tempXind, tempYind, ion_hit[0], ion_hit[1], ion_hit[2]) self.tof_inds = sorted(self.tof_inds) if len(self.tof_inds) > 1: for i_tof_ind in range(len(self.tof_inds)-1): # print '****************************************',self.PiPiCo.shape, len(self.tof_inds) self.hists_all['pipico'][self.tof_inds[i_tof_ind],self.tof_inds[(i_tof_ind+1):]] += 1 if len(self.tof_inds) > 0: F_sum,_ = np.histogram(self.HitFinder.F_sum, bins=self.TSum_axis) S_sum,_ = np.histogram(self.HitFinder.S_sum, bins=self.TSum_axis) self.hists_all['F_sum'] += F_sum self.hists_all['S_sum'] += S_sum def updateMCPGatesIon(self, t_ind): for M_key, M_item in self.MCPGates.iteritems(): M_item.update_ion(t_ind) def updateTofGatesIon(self, t_ind,x_ind,y_ind,tele,xele,yele): for T_key, T_item in self.TofGates.iteritems(): T_item.update_ion(t_ind, x_ind, y_ind,tele,xele,yele) def updatePiPiCoGatesIon(self, t_ind, xind, yind,tele,xele,yele): for P_key, P_item in self.PiPiCoGates.iteritems(): P_item.update_ion(t_ind, xind, yind,tele,xele,yele) def updateMCPGatesE(self, eAind, eRind, eXind, eYind): for M_key, M_item in self.MCPGates.iteritems(): if M_item.is_coin(): M_item.update_electron(eAind, eRind, eXind, eYind) def updateTofGatesE(self, eAind, eRind, eXind, eYind): for T_key, T_item in self.TofGates.iteritems(): if T_item.is_coin(): T_item.update_electron(eAind, eRind, eXind, eYind) def updatePiPiCoGatesE(self, eAind, eRind, eXind, eYind, pho_ind, pls_ind): for P_key, P_item in self.PiPiCoGates.iteritems(): if P_item.is_coin(): P_item.update_electron(eAind, eRind, eXind, eYind, pho_ind, pls_ind) def updateShotInfo(self,phoInd, plsInd,phoEng,plsEng): for M_key, M_item in self.MCPGates.iteritems(): if M_item.is_coin(): M_item.update_shotinfo(phoInd, plsInd) M_item.reset_coin_var() for T_key, T_item in self.TofGates.iteritems(): if T_item.is_coin(): T_item.update_shotinfo(phoInd, plsInd) T_item.reset_coin_var() for P_key, P_item in self.PiPiCoGates.iteritems(): if P_item.is_coin(): P_item.update_shotinfo(phoInd, plsInd,phoEng,plsEng) P_item.reset_coin_var() def reduce(self): print(str(self.mpi_rank)+' starts reduce.') for histname in self.hist_names_all: # self.time_a = time.time() try: self.time_a = time.time() MPI.COMM_WORLD.Reduce(self.hists_all[histname],self.hists_all_all[histname]) self.time_b = time.time() print(histname+' reduced by '+'Rank {0} in {1:.2f} seconds'.format(self.mpi_rank,self.time_b - self.time_a)) except Exception as e: print(histname+' failed to be redueced by '+str(self.mpi_rank)) print(e) # self.time_b = time.time() # print(histname+' reduced by '+'Rank {0} in {1:.2f} seconds'.format(self.mpi_rank,self.time_b - self.time_a)) def save_data(self,num_lost_events_timecond,num_lost_events_datacond,num_lost_events_evtcond,num_failed_events,num_reduced_events): print 'saving hdf5 file' h5f = h5py.File(self.output_path,'w') grp = h5f.create_group('all') try: grp.create_dataset('num_lost_events_timecond',data = num_lost_events_timecond) grp.create_dataset('num_lost_events_datacond',data = num_lost_events_datacond) grp.create_dataset('num_lost_events_evtcond',data = num_lost_events_evtcond) grp.create_dataset('num_failed_events',data = num_failed_events) grp.create_dataset('num_reduced_events',data = num_reduced_events) except Exception as e: print('events stats'+' failed to be saved.') print(e) for histname in self.hist_names_all: try: grp.create_dataset(histname,data = self.hists_all_all[histname]) except Exception as e: print(histname+' failed to be saved.') print(e) grp1 = h5f.create_group('axis') for var in self.vars: try: grp1.create_dataset(var+'_axis',data = self.vars_axis[var]) except Exception as e: print(var+'_axis failed to be saved.') print(e) h5f.close() print 'saved hdf5 file' def init_gates(self): self.PiPiCoGates = {} for PPG in range(self.PiPiCoGates_params['num_gates']): gateName = self.PiPiCoGates_params['gate'+str(PPG+1)+'_name'] tof1s = self.PiPiCoGates_params['gate'+str(PPG+1)+'_tof1s'] tof1l = self.PiPiCoGates_params['gate'+str(PPG+1)+'_tof1l'] tof2s = self.PiPiCoGates_params['gate'+str(PPG+1)+'_tof2s'] tof2l = self.PiPiCoGates_params['gate'+str(PPG+1)+'_tof2l'] tof3s = self.PiPiCoGates_params['gate'+str(PPG+1)+'_tof3s'] tof3l = self.PiPiCoGates_params['gate'+str(PPG+1)+'_tof3l'] thresh1_n3n1 = self.PiPiCoGates_params['gate'+str(PPG+1)+'_thresh1_n3n1'] thresh2_n3n1 = self.PiPiCoGates_params['gate'+str(PPG+1)+'_thresh2_n3n1'] thresh1_n3n2 = self.PiPiCoGates_params['gate'+str(PPG+1)+'_thresh1_n3n2'] thresh2_n3n2 = self.PiPiCoGates_params['gate'+str(PPG+1)+'_thresh2_n3n2'] self.PiPiCoGates[gateName] = PiPiCoGate(self, gateName, tof1s, tof1l, tof2s, tof2l,tof3s, tof3l,thresh1_n3n1,thresh2_n3n1,thresh1_n3n2,thresh2_n3n2,self.ang_f) self.TofGates = {} for TofG in range(self.TofGates_params['num_gates']): gateName = self.TofGates_params['gate'+str(TofG+1)+'_name'] tofs = self.TofGates_params['gate'+str(TofG+1)+'_tofs'] tofl = self.TofGates_params['gate'+str(TofG+1)+'_tofl'] thresh1_tof = self.TofGates_params['gate'+str(TofG+1)+'_thresh1'] thresh2_tof = self.TofGates_params['gate'+str(TofG+1)+'_thresh2'] self.TofGates[gateName] = TofGate(self, gateName, tofs, tofl,thresh1_tof,thresh2_tof) self.MCPGates = {} for MCPG in range(self.MCPGates_params['num_gates']): gateName = self.MCPGates_params['gate'+str(MCPG+1)+'_name'] tofs = self.MCPGates_params['gate'+str(MCPG+1)+'_tofs'] tofl = self.MCPGates_params['gate'+str(MCPG+1)+'_tofl'] self.MCPGates[gateName] = MCPGate(self, gateName, tofs, tofl)
def __init__(self, exp, run, detname, evt, detector, algorithm, hitParam_alg_npix_min, hitParam_alg_npix_max, hitParam_alg_amax_thr, hitParam_alg_atot_thr, hitParam_alg_son_min, streakMask_on, streakMask_sigma, streakMask_width, userMask_path, psanaMask_on, psanaMask_calib, psanaMask_status, psanaMask_edges, psanaMask_central, psanaMask_unbond, psanaMask_unbondnrs, medianFilterOn=0, medianRank=5, radialFilterOn=0, distance=0.0, windows=None, **kwargs): self.exp = exp self.run = run self.detname = detname self.det = detector self.algorithm = algorithm self.maxRes = 0 self.npix_min = hitParam_alg_npix_min self.npix_max = hitParam_alg_npix_max self.amax_thr = hitParam_alg_amax_thr self.atot_thr = hitParam_alg_atot_thr self.son_min = hitParam_alg_son_min self.streakMask_on = str2bool(streakMask_on) self.streakMask_sigma = streakMask_sigma self.streakMask_width = streakMask_width self.userMask_path = userMask_path self.psanaMask_on = str2bool(psanaMask_on) self.psanaMask_calib = str2bool(psanaMask_calib) self.psanaMask_status = str2bool(psanaMask_status) self.psanaMask_edges = str2bool(psanaMask_edges) self.psanaMask_central = str2bool(psanaMask_central) self.psanaMask_unbond = str2bool(psanaMask_unbond) self.psanaMask_unbondnrs = str2bool(psanaMask_unbondnrs) self.medianFilterOn = medianFilterOn self.medianRank = medianRank self.radialFilterOn = radialFilterOn self.distance = distance self.windows = windows self.userMask = None self.psanaMask = None self.streakMask = None self.userPsanaMask = None self.combinedMask = None # Make user mask if self.userMask_path is not None: self.userMask = np.load(self.userMask_path) # Make psana mask if self.psanaMask_on: self.psanaMask = detector.mask(evt, calib=self.psanaMask_calib, status=self.psanaMask_status, edges=self.psanaMask_edges, central=self.psanaMask_central, unbond=self.psanaMask_unbond, unbondnbrs=self.psanaMask_unbondnrs) # Combine userMask and psanaMask self.userPsanaMask = np.ones_like(self.det.calib(evt)) if self.userMask is not None: self.userPsanaMask *= self.userMask if self.psanaMask is not None: self.userPsanaMask *= self.psanaMask # Powder of hits and misses self.powderHits = np.zeros_like(self.userPsanaMask) self.powderMisses = np.zeros_like(self.userPsanaMask) self.alg = PyAlgos(windows=self.windows, mask=self.userPsanaMask, pbits=0) # set peak-selector parameters: self.alg.set_peak_selection_pars(npix_min=self.npix_min, npix_max=self.npix_max, \ amax_thr=self.amax_thr, atot_thr=self.atot_thr, \ son_min=self.son_min) # set algorithm specific parameters if algorithm == 1: self.hitParam_alg1_thr_low = kwargs["alg1_thr_low"] self.hitParam_alg1_thr_high = kwargs["alg1_thr_high"] self.hitParam_alg1_rank = int(kwargs["alg1_rank"]) self.hitParam_alg1_radius = int(kwargs["alg1_radius"]) self.hitParam_alg1_dr = kwargs["alg1_dr"] elif algorithm == 3: self.hitParam_alg3_rank = kwargs["alg3_rank"] self.hitParam_alg3_r0 = int(kwargs["alg3_r0"]) self.hitParam_alg3_dr = kwargs["alg3_dr"] elif algorithm == 4: self.hitParam_alg4_thr_low = kwargs["alg4_thr_low"] self.hitParam_alg4_thr_high = kwargs["alg4_thr_high"] self.hitParam_alg4_rank = int(kwargs["alg4_rank"]) self.hitParam_alg4_r0 = int(kwargs["alg4_r0"]) self.hitParam_alg4_dr = kwargs["alg4_dr"] self.maxNumPeaks = 2048 self.StreakMask = myskbeam.StreakMask(self.det, evt, width=self.streakMask_width, sigma=self.streakMask_sigma) self.cx, self.cy = self.det.point_indexes(evt, pxy_um=(0, 0)) self.iX = np.array(self.det.indexes_x(evt), dtype=np.int64) self.iY = np.array(self.det.indexes_y(evt), dtype=np.int64) if len(self.iX.shape) == 2: self.iX = np.expand_dims(self.iX, axis=0) self.iY = np.expand_dims(self.iY, axis=0) # Initialize radial background subtraction self.setupExperiment() if self.radialFilterOn: self.setupRadialBackground() self.updatePolarizationFactor()
from psana import * import numpy as np from ImgAlgos.PyAlgos import PyAlgos from skbeam.core.accumulators.histogram import Histogram dsource = MPIDataSource('exp=sxr07416:run=28:smd') det = Detector('OPAL1') alg = PyAlgos() alg.set_peak_selection_pars(npix_min=9, npix_max=100, amax_thr=40, atot_thr=300, son_min=0) hist_row = Histogram((1024, 0., 1024.)) hist_col = Histogram((1024, 0., 1024.)) hist_amp = Histogram((1024, 0., 3000.)) smldata = dsource.small_data('run28.h5', gather_interval=100) peakrow = np.zeros((10), dtype=int) peakcol = np.zeros((10), dtype=int) peakamp = np.zeros((10), dtype=float) for nevt, evt in enumerate(dsource.events()): calib = det.calib(evt) if calib is None: continue peaks = alg.peak_finder_v1(calib, thr_low=40, thr_high=40,