Exemple #1
0
def arccosh(inp):
    if isinstance(inp, ooarray) and any([isinstance(elem, oofun) for elem in atleast_1d(inp)]):
        return ooarray([arccosh(elem) for elem in inp])        
    if hasStochastic and  isinstance(inp, distribution.stochasticDistribution):
        return distribution.stochasticDistribution(arccosh(inp.values), inp.probabilities.copy())._update(inp)      
    if not isinstance(inp, oofun): return np.arccosh(inp)
    r = oofun(st_arccosh, inp, d = lambda x: Diag(1.0/np.sqrt(x**2-1.0)), vectorized = True)
    F0, shift = 0.0, 1.0
    r._interval_ = lambda domain, dtype: nonnegative_interval(inp, np.arccosh, domain, dtype, F0, shift)
    return r
Exemple #2
0
def sqrt(inp, attachConstraints = True):
    if isinstance(inp, ooarray) and any([isinstance(elem, oofun) for elem in atleast_1d(inp)]):
        return ooarray([sqrt(elem) for elem in inp])
    if hasStochastic and  isinstance(inp, distribution.stochasticDistribution):
        return distribution.stochasticDistribution(sqrt(inp.values), inp.probabilities.copy())._update(inp)      
    if not isinstance(inp, oofun): 
        return np.sqrt(inp)
#    def fff(x):
#        print x
#        return np.sqrt(x)
    r = oofun(st_sqrt, inp, d = lambda x: Diag(0.5 / np.sqrt(x)), vectorized = True)
    F0 = 0.0
    r._interval_ = lambda domain, dtype: nonnegative_interval(inp, np.sqrt, domain, dtype, F0)
    if attachConstraints: r.attach((inp>0)('sqrt_domain_zero_bound_%d' % r._id, tol=-1e-7))
    return r