print ("A:%s N:%s K:%s %s G:%s" % ( df_count, now_count, len(top_all[top_all['buy'] > 0]), len(top_now[top_now['volume'] <= 0]), len(top_dif))), # print "Rt:%0.3f" % (float(time.time() - time_Rt)) print "Rt:%0.1f dT:%s" % (float(time.time() - time_Rt),cct.get_time_to_date(time_s)) if 'counts' in top_dif.columns.values: top_dif = top_dif.sort_values(by=['diff', 'volume', 'percent', 'counts', 'ratio'], ascending=[0, 0, 0, 1, 1]) else: # print "Good Morning!!!" top_dif = top_dif.sort_values(by=['diff', 'percent', 'ratio'], ascending=[0, 0, 1]) # top_all=top_all.sort_values(by=['percent','diff','counts','ratio'],ascending=[0,0,1,1]) # print rl.format_for_print(top_dif[:10]) print rl.format_for_print(top_dif[:10]) # print top_all.loc['000025',:] # print "staus",status if status: for code in top_dif[:10].index: code = re.findall('(\d+)', code) if len(code) > 0: code = code[0] kind = sl.get_multiday_ave_compare_silent(code) # print top_all[top_all.low.values==0] # else: # print "\t No RealTime Data" else: print "\tNo Data"
if cct.get_now_time_int() > 915 and cct.get_now_time_int( ) < 935: # top_temp = top_temp[ (top_temp['ma5d'] > top_temp['ma10d']) & (top_temp['buy'] > top_temp['ma10d']) ][:10] top_dd = pd.concat([top_temp[:10], top_end], axis=0) top_dd = top_dd.drop_duplicates() top_dd = top_dd.loc[:, ct.Duration_format_buy] else: # top_temp = top_temp[ (top_temp['ma5d'] > top_temp['ma10d']) & (top_temp['trade'] > top_temp['ma10d']) ][:10] # top_temp = top_temp[top_temp['trade'] > top_temp['ma10d']] top_dd = pd.concat([top_temp[:10], top_end], axis=0) top_dd = top_dd.drop_duplicates() top_dd = top_dd.loc[:, ct.Duration_format_trade] print rl.format_for_print(top_dd) # dfgui.show(top_dif) # if cct.get_now_time_int() < 930 or cct.get_now_time_int() > 1505 or (cct.get_now_time_int() > 1125 and cct.get_now_time_int() < 1505): # print rl.format_for_print(top_dif[-10:]) # print top_all.loc['000025',:] # print "staus",status if status: for code in top_dd[:10].index: code = re.findall('(\d+)', code) if len(code) > 0: code = code[0] kind = sl.get_multiday_ave_compare_silent(code) # print top_all[top_all.low.values==0] # else:
# top_all = top_all[top_all.prev_p >= top_all.lhigh] top_all = top_all.loc[ :, ["name", "percent", "diff", "counts", "volume", "trade", "prev_p", "ratio"] ] print "G:%s dt:%s" % (len(top_all), cct.get_time_to_date(time_s)) top_all = top_all.sort_values(by=["diff", "counts", "volume", "ratio"], ascending=[0, 0, 0, 1]) # top_all=top_all.sort_values(by=['percent','diff','counts','ratio'],ascending=[0,0,1,1]) # print top_all # print pt.PrettyTable([''] + list(top_all.columns)) # print tbl.tabulate(top_all,headers='keys', tablefmt='psql') # print tbl.tabulate(top_all,headers='keys', tablefmt='orgtbl') # print rl.format_for_print(top_all) # print top_all[:10] print rl.format_for_print(top_all[:10]) # print "staus",status if status: for code in top_all[:10].index: code = re.findall("(\d+)", code) if len(code) > 0: code = code[0] kind = sl.get_multiday_ave_compare_silent(code) top_all = top_bak del top_bak gc.collect() else: print "no data" int_time = cct.get_now_time_int() if cct.get_work_time():
if duration_date > ct.duration_date_sort: top_temp = top_temp.sort_values( by=eval(market_sort_value), ascending=market_sort_value_key) else: top_temp = top_temp.sort_values( by=eval(market_sort_value), ascending=market_sort_value_key) # if cct.get_now_time_int() > 915 and cct.get_now_time_int() < 935: # # top_temp = top_temp[ (top_temp['ma5d'] > top_temp['ma10d']) & (top_temp['buy'] > top_temp['ma10d']) ] # top_temp = top_temp.loc[:,ct.MonitorMarket_format_buy] # else: # # top_temp = top_temp[ (top_temp['ma5d'] > top_temp['ma10d']) & (top_temp['buy'] > top_temp['ma10d']) ] # top_temp = top_temp.loc[:,ct.MonitorMarket_format_buy] print rl.format_for_print( top_temp.loc[:, ct.MonitorMarket_format_buy][:10]) # print rl.format_for_print(top_dif[:10]) # print top_all.loc['000025',:] # print "staus",status if status: for code in top_dif[:10].index: code = re.findall('(\d+)', code) if len(code) > 0: code = code[0] kind = sl.get_multiday_ave_compare_silent(code) # print top_all[top_all.low.values==0] # else: # print "\t No RealTime Data"
else: top_dif = top_dif.sort_values(by=["diff", "percent", "ratio"], ascending=[1, 0, 1]) # top_all=top_all.sort_values(by=['percent','diff','counts','ratio'],ascending=[0,0,1,1]) # print rl.format_for_print(top_dif[:10]) # top_dd = pd.concat([top_dif[:5],top_temp[:3],top_dif[-3:],top_temp[-3:]], axis=0) top_dd = pd.concat([top_dif[:10], top_dif[-5:]], axis=0) if cct.get_now_time_int() < 930: top_dd = top_dd.loc[ :, ["name", "buy", "diff", "volume", "percent", "ratio", "counts", "high", "lastp", "date"] ] else: top_dd = top_dd.loc[ :, ["name", "trade", "diff", "volume", "percent", "ratio", "counts", "high", "lastp", "date"] ] print rl.format_for_print(top_dd) # if cct.get_now_time_int() < 930 or cct.get_now_time_int() > 1505 or (cct.get_now_time_int() > 1125 and cct.get_now_time_int() < 1505): # print rl.format_for_print(top_dif[-10:]) # print top_all.loc['000025',:] # print "staus",status if status: for code in top_dif[:10].index: code = re.findall("(\d+)", code) if len(code) > 0: code = code[0] kind = sl.get_multiday_ave_compare_silent(code) # print top_all[top_all.low.values==0] # else: # print "\t No RealTime Data"
# top_temp = top_temp.sort_values(by=['dff', 'op', 'ra', 'percent', 'ratio'], # top_temp = top_temp.sort_values(by=ct.Monitor_sort_op, # ascending=ct.Monitor_sort_op_key) # top_temp = top_temp.sort_values(by=ct.Duration_percentdn_ra, # ascending=ct.Duration_percentdn_ra_key) # top_temp = top_temp.sort_values(by=ct.Duration_percent_op, # ascending=ct.Duration_percent_op_key) top_temp = top_temp.sort_values( by=eval(market_sort_value), ascending=market_sort_value_key) # top_temp = top_temp.sort_values(by=['op','ra','dff', 'percent', 'ratio'], ascending=[0,0,0, 0, 1]) # if cct.get_now_time_int() > 915 and cct.get_now_time_int() < 935: # top_temp = top_temp.loc[:,ct.Monitor_format_trade] # else: # top_temp = top_temp.loc[:,ct.Monitor_format_trade] print rl.format_for_print( top_temp.loc[:, ct.Monitor_format_trade][:10]) # print rl.format_for_print(top_all[:10]) if status: for code in top_all[:10].index: code = re.findall('(\d+)', code) if len(code) > 0: code = code[0] kind = sl.get_multiday_ave_compare_silent(code) else: # print top_now[:10] print "\tNo data" int_time = cct.get_now_time_int() if cct.get_work_time(): if int_time < 930: while 1: