def train_model(design, filename, columns, targets, comsize_third=20, separator='\t', **train_kwargs): ''' train_model(design, filename, columns, targets) Given a design, will train a committee like that on the data specified. Will save the committee as '.design_time.pcom' where design is replaced by the design and time is replaced by a string of numbers from time() Returns this filename ''' starting_time = time.time() fastest_done = None m = Master() #m.connect('gibson.thep.lu.se', 'science') m.connect('130.235.189.249', 'science') print('Connected to server') m.clear_queues() savefile = ".{nodes}_{a_func}_{time:.0f}.pcom".format(nodes=design[0], a_func=design[1], time=time.time()) print('\nIncluding columns: ' + str(columns)) print('Target columns: ' + str(targets)) P, T = parse_file(filename, targetcols=targets, inputcols=columns, normalize=True, separator=separator, use_header=True) #columns = (2, -6, -5, -4, -3, -2, -1) #_P, T = parse_file(filename, targetcols = [4, 5], inputcols = (2, -4, -3, -2, -1), ignorerows = [0], normalize = True) #P, _T = parse_file(filename, targetcols = [4], inputcols = columns, ignorerows = [0], normalize = True) print("\nData set:") print("Number of patients with events: " + str(T[:, 1].sum())) print("Number of censored patients: " + str((1 - T[:, 1]).sum())) comsize = 3 * comsize_third #Make sure it is divisible by three (3*X will create X jobs) print('Number of members in the committee: ' + str(comsize)) print('Design used (size, function): ' + str(design)) #try: # pop_size = input('Population size [50]: ') #except SyntaxError as e: if 'population_size' not in train_kwargs: train_kwargs['population_size'] = 200 #print("Population size: " + str(train_kwargs['population_size'])) #try: # mutation_rate = input('Please input a mutation rate (0.25): ') #except SyntaxError as e: if 'mutation_chance' not in train_kwargs: train_kwargs['mutation_chance'] = 0.25 #print("Mutation rate: " + str(train_kwargs['mutation_chance'])) #try: # epochs = input("Number of generations (200): ") #except SyntaxError as e: if 'epochs' not in train_kwargs: train_kwargs['epochs'] = 100 for k, v in train_kwargs.iteritems(): print(str(k) + ": " + str(v)) #errorfunc = weighted_c_index_error errorfunc = c_index_error print("\nError function: " + errorfunc.__name__) print('\n Job status:\n') count = 0 all_counts = [] all_jobs = {} #trn_set = {} trn_idx = {} master_com = None allpats = P.copy() #allpats[:, 1] = 1 #This is the event column allpats_targets = T patvals = [[] for bah in xrange(len(allpats))] #Lambda times for _time in xrange(1): #Get an independant test set, 1/tau of the total. super_set, super_indices = get_cross_validation_sets( P, T, 1, binary_column=1, return_indices=True) super_zip = zip(super_set, super_indices) #For every blind test group for (((TRN, TEST), (TRN_IDX, TEST_IDX)), _t) in zip(super_zip, xrange(len(super_set))): TRN_INPUTS = TRN[0] TRN_TARGETS = TRN[1] #TEST_INPUTS = TEST[0] #TEST_TARGETS = TEST[1] for com_num in xrange(comsize / 3): count += 1 all_counts.append(count) #trn_set[count] = (TRN_INPUTS, TRN_TARGETS) trn_idx[count] = TRN_IDX (netsize, hidden_func) = design com = build_feedforward_committee(3, len(P[0]), netsize, 1, hidden_function=hidden_func, output_function='linear') #1 is the column in the target array which holds the binary censoring information job = m.assemblejob((count, _time, _t, design), train_committee, com, train_evolutionary, TRN_INPUTS, TRN_TARGETS, binary_target=1, error_function=errorfunc, **train_kwargs) all_jobs[count] = job m.sendjob(job[0], job[1], *job[2], **job[3]) #TIME TO RECEIVE THE RESULTS while (count > 0): print('Remaining jobs: {0}'.format(all_counts)) if fastest_done is None: ID, RESULT = m.getresult() #Blocks fastest_done = time.time() - starting_time else: RETURNVALUE = m.get_waiting_result(2 * fastest_done) if RETURNVALUE is not None: ID, RESULT = RETURNVALUE else: print( 'Timed out after {0} seconds. Putting remaining jobs {1} back on the queue.\nYou should restart \ the server after this session.'.format(fastest_done, all_counts)) for _c in all_counts: job = all_jobs[_c] m.sendjob(job[0], job[1], *job[2], **job[3]) continue #Jump to next iteration print('Result received! Processing...') _c, _time, _t, design = ID (com, trn_errors, vald_errors, internal_sets, internal_sets_indices) = RESULT if _c not in all_counts: print('This result [{0}] has already been processed.'.format(_c)) continue count -= 1 #TRN_INPUTS, TRN_TARGETS = trn_set[_c] TRN_IDX = trn_idx[_c] all_counts.remove(_c) com.set_training_sets([ _set[0][0] for _set in internal_sets ]) #first 0 gives training sets, second 0 gives inputs. if master_com is None: master_com = com else: master_com.nets.extend(com.nets) #Add this batch of networks #Now what we'd like to do is get the value for each patient in the #validation set, for all validation sets. Then I'd like to average the #result for each such patient, over the different validation sets. #1 for the validation set. Was given to the com.nets in the same type of iteration, so order is same # patvals will be order-consistent with P and T #for (_trn_set_indices, val_set_indices), net in zip(internal_sets_indices, com.nets): # for i in val_set_indices: # patvals_new[TRN_IDX[i]].append(com.risk_eval(P[TRN_IDX[i]], net = net)) for ((trn_in, trn_tar), (val_in, val_tar)), idx, net in zip(internal_sets, internal_sets_indices, com.nets): _C_ = -1 for valpat in val_in: _C_ += 1 i = TRN_IDX[idx[1][_C_]] pat = P[i] #print("Facit: \n" + str(valpat)) #print("_C_ = " + str(_C_)) #print("i: " + str(i)) #print("P[TRN_IDX[i]] : " + str(pat)) assert ((pat == valpat).all()) patvals[i].append(com.risk_eval(pat, net=net)) #for pat, i in zip(allpats, xrange(len(patvals))): #We could speed this up by only reading every third dataset, but I'm not sure if they are ordered correctly... # for ((trn_in, trn_tar), (val_in, val_tar)), idx, net in zip(internal_sets, internal_sets_indices, com.nets): # _C_ = -1 # for valpat in val_in: # _C_ += 1 # if (pat == valpat).all(): #Checks each variable individually, all() does a boolean and between the results #print("Facit: \n" + str(valpat)) #print("Allpats-index = " + str(i)) #print("_C_ = " + str(_C_)) #print("idx_val[_C_]: " + str(idx[1][_C_])) #print("TRN_IDX[i]: " + str(TRN_IDX[idx[1][_C_]])) #print("P[TRN_IDX[i]] : " + str(P[TRN_IDX[idx[1][_C_]]])) # patvals[i].append(com.risk_eval(pat, net = net)) #Just to have something to count # break #Done with this data_set avg_vals = numpy.array([ [numpy.mean(patval)] for patval in patvals ]) #Need double brackets for dimensions to fit C-module #Now we have average validation ranks. do C-index on this avg_val_c_index = get_C_index(allpats_targets, avg_vals) print('Average com-validation C-Index so far : {0}'.format( avg_val_c_index)) print('Saving committee so far in {0}'.format(savefile)) with open(savefile, 'w') as FILE: pickle.dump(master_com, FILE) return savefile
def model_contest(filename, columns, targets, designs, comsize_third = 5, repeat_times = 20, testfilename = None, separator = '\t', **train_kwargs): ''' model_contest(filename, columns, targets, designs) You must use column names! Here are example values for the input arguments: filename = "/home/gibson/jonask/Dropbox/Ann-Survival-Phd/Two_thirds_of_the_n4369_dataset_with_logs_lymf.txt" columns = ('age', 'log(1+lymfmet)', 'n_pos', 'tumsize', 'log(1+er_cyt)', 'log(1+pgr_cyt)', 'pgr_cyt_pos', 'er_cyt_pos', 'size_gt_20', 'er_cyt_pos', 'pgr_cyt_pos') targets = ['time', 'event'] Writes the results to '.winningdesigns_time.csv' and returns the filename ''' starting_time = time.time() fastest_done = None m = Master() #m.connect('gibson.thep.lu.se', 'science') m.connect('130.235.189.249', 'science') print('Connected to server') m.clear_queues() print('\nIncluding columns: ' + str(columns)) print('\nTarget columns: ' + str(targets)) P, T = parse_file(filename, targetcols = targets, inputcols = columns, normalize = True, separator = separator, use_header = True) if testfilename is not None: Ptest, Ttest = parse_file(testfilename, targetcols = targets, inputcols = columns, normalize = True, separator = separator, use_header = True) else: Ptest, Ttest = None, None print("\nData set:") print("Number of patients with events: " + str(T[:, 1].sum())) print("Number of censored patients: " + str((1 - T[:, 1]).sum())) print("T:" + str(T.shape)) print("P:" + str(P.shape)) if (Ptest is not None and Ttest is not None): print("\nExternal Test Data set:") print("Number of patients with events: " + str(Ttest[:, 1].sum())) print("Number of censored patients: " + str((1 - Ttest[:, 1]).sum())) print("Ttest:" + str(Ttest.shape)) print("Ptest:" + str(Ptest.shape)) comsize = 3 * comsize_third #Make sure it is divisible by three print('\nNumber of members in each committee: ' + str(comsize)) print('Designs used in testing (size, function): ' + str(designs)) # We can generate a test set from the data set, but usually we don't want that # Leave at 1 for no test set. val_pieces = 1 print('Cross-test pieces: ' + str(val_pieces)) cross_times = repeat_times print('Number of times to repeat procedure: ' + str(cross_times)) #try: # pop_size = input('Population size [50]: ') #except SyntaxError as e: if 'population_size' not in train_kwargs: train_kwargs['population_size'] = 50 #try: # mutation_rate = input('Please input a mutation rate (0.25): ') #except SyntaxError as e: if 'mutation_chance' not in train_kwargs: train_kwargs['mutation_chance'] = 0.25 #try: # epochs = input("Number of generations (200): ") #except SyntaxError as e: if 'epochs' not in train_kwargs: train_kwargs['epochs'] = 100 for k, v in train_kwargs.iteritems(): print(str(k) + ": " + str(v)) print('\n Job status:\n') count = 0 all_counts = [] all_jobs = {} tests = {} #trn_set = {} trn_idx = {} all_best = [] all_best_com_val = [] all_best_avg_trn = [] all_best_avg_val = [] all_best_design = [] all_best_test = [] #Lambda times for _time in xrange(cross_times): #Get an independant test set, 1/tau of the total. super_set, super_indices = get_cross_validation_sets(P, T, val_pieces , binary_column = 1, return_indices = True) super_zip = zip(super_set, super_indices) all_best.append({}) all_best_com_val.append({}) all_best_avg_trn.append({}) all_best_avg_val.append({}) all_best_design.append({}) all_best_test.append({}) best = all_best[_time] best_com_val = all_best_com_val[_time] best_avg_trn = all_best_avg_trn[_time] best_avg_val = all_best_avg_val[_time] best_design = all_best_design[_time] best_test = all_best_test[_time] #For every blind test group for (((TRN, TEST), (TRN_IDX, TEST_IDX)), _t) in zip(super_zip, xrange(len(super_set))): TRN_INPUTS = TRN[0] TRN_TARGETS = TRN[1] TEST_INPUTS = TEST[0] TEST_TARGETS = TEST[1] #run each architecture design on a separate machine best[_t] = None best_com_val[_t] = 0 best_avg_trn[_t] = 0 best_avg_val[_t] = 0 best_design[_t] = None best_test[_t] = None for design in designs: count += 1 all_counts.append(count) (netsize, hidden_func) = design com = build_feedforward_committee(comsize, len(P[0]), netsize, 1, hidden_function = hidden_func, output_function = 'linear') tests[count] = (TEST_INPUTS, TEST_TARGETS) #trn_set[count] = (TRN_INPUTS, TRN_TARGETS) #print("TRN_IDX" + str(TRN_IDX)) #print("TEST_IDX" + str(TEST_IDX)) trn_idx[count] = TRN_IDX #1 is the column in the target array which holds the binary censoring information job = m.assemblejob((count, _time, _t, design), train_committee, com, train_evolutionary, TRN_INPUTS, TRN_TARGETS, binary_target = 1, error_function = c_index_error, **train_kwargs) all_jobs[count] = job m.sendjob(job[0], job[1], *job[2], **job[3]) while(count > 0): print('Remaining jobs: {0}'.format(all_counts)) if fastest_done is None: ID, RESULT = m.getresult() #Blocks fastest_done = time.time() - starting_time else: RETURNVALUE = m.get_waiting_result(2 * fastest_done) if RETURNVALUE is not None: ID, RESULT = RETURNVALUE else: print('Timed out after {0} seconds. Putting remaining jobs {1} back on the queue.\n \ You should restart the server after this session.'.format(fastest_done, all_counts)) for _c in all_counts: job = all_jobs[_c] m.sendjob(job[0], job[1], *job[2], **job[3]) continue #Jump to next iteration print('Result received! Processing...') _c, _time, _t, design = ID (com, trn_errors, vald_errors, internal_sets, internal_sets_indices) = RESULT if _c not in all_counts: print('This result [{0}] has already been processed.'.format(_c)) continue count -= 1 TEST_INPUTS, TEST_TARGETS = tests[_c] #TRN_INPUTS, TRN_TARGETS = trn_set[_c] TRN_IDX = trn_idx[_c] all_counts.remove(_c) com.set_training_sets([_set[0][0] for _set in internal_sets]) #first 0 gives training sets, second 0 gives inputs. #Now what we'd like to do is get the value for each patient in the #validation set, for all validation sets. Then I'd like to average the #result for each such patient, over the different validation sets. allpats = [] allpats.extend(internal_sets[0][0][0]) #Extend with training inputs allpats.extend(internal_sets[0][1][0]) #Extend with validation inputs allpats_targets = [] allpats_targets.extend(internal_sets[0][0][1]) #training targets allpats_targets.extend(internal_sets[0][1][1]) #validation targets allpats_targets = numpy.array(allpats_targets) patvals = [[] for bah in xrange(len(allpats))] #print(len(patvals)) #print(len(internal_sets_indices)) #1 for the validation set. Was given to the com.nets in the same type of iteration, so order is same # Will be order consistent with P and T for ((trn_in, trn_tar), (val_in, val_tar)), idx, net in zip(internal_sets, internal_sets_indices, com.nets): _C_ = -1 for valpat in val_in: _C_ += 1 i = TRN_IDX[idx[1][_C_]] pat = P[i] #print("Facit: \n" + str(valpat)) #print("_C_ = " + str(_C_)) #print("i: " + str(i)) #print("P[TRN_IDX[i]] : " + str(pat)) assert((pat == valpat).all()) patvals[i].append(com.risk_eval(pat, net = net)) #Need double brackets for dimensions to fit C-module avg_vals = numpy.array([[numpy.mean(patval)] for patval in patvals]) #Now we have average validation ranks. do C-index on this avg_val_c_index = get_C_index(T, avg_vals) trn_errors = numpy.array(trn_errors.values(), dtype = numpy.float64) ** -1 vald_errors = numpy.array(vald_errors.values(), dtype = numpy.float64) ** -1 avg_trn = numpy.mean(trn_errors) avg_val = numpy.mean(vald_errors) best = all_best[_time] best_com_val = all_best_com_val[_time] best_avg_trn = all_best_avg_trn[_time] best_avg_val = all_best_avg_val[_time] best_design = all_best_design[_time] best_test = all_best_test[_time] if avg_val_c_index > best_com_val[_t]: best[_t] = com best_com_val[_t] = avg_val_c_index best_avg_trn[_t] = avg_trn best_avg_val[_t] = avg_val best_design[_t] = design best_test[_t] = tests[_c] print('\nWinning designs') winnerfilename = '.winningdesigns_{0:.0f}.csv'.format(time.time()) with open(winnerfilename, 'w') as F: print('Average Training Perf, Average Validation Perf, Average Committee Validation Perf, Test Perf, Design:') F.write('Average Training Perf, Average Validation Perf, Average Committee Validation Perf, Test Perf, Design\n') for _time in xrange(len(all_best)): best = all_best[_time] best_com_val = all_best_com_val[_time] best_avg_trn = all_best_avg_trn[_time] best_avg_val = all_best_avg_val[_time] best_design = all_best_design[_time] best_test = all_best_test[_time] for _t in best.keys(): TEST_INPUTS, TEST_TARGETS = best_test[_t] com = best[_t] if len(TEST_INPUTS) > 0: #Need double brackets for dimensions to be right for numpy outputs = numpy.array([[com.risk_eval(inputs)] for inputs in TEST_INPUTS]) test_c_index = get_C_index(TEST_TARGETS, outputs) elif Ptest is not None and Ttest is not None: #Need double brackets for dimensions to be right for numpy outputs = numpy.array([[com.risk_eval(inputs)] for inputs in Ptest]) test_c_index = get_C_index(Ttest, outputs) else: test_c_index = 0 print('{trn}, {val}, {com_val}, {test}, {dsn}'.format(trn = best_avg_trn[_t], val = best_avg_val[_t], com_val = best_com_val[_t], test = test_c_index, dsn = best_design[_t])) F.write('{trn}, {val}, {com_val}, {test}, {dsn}\n'.format(trn = best_avg_trn[_t], val = best_avg_val[_t], com_val = best_com_val[_t], test = test_c_index, dsn = best_design[_t])) return winnerfilename
def train_model(design, filename, columns, targets, comsize_third = 20, separator = '\t', **train_kwargs): ''' train_model(design, filename, columns, targets) Given a design, will train a committee like that on the data specified. Will save the committee as '.design_time.pcom' where design is replaced by the design and time is replaced by a string of numbers from time() Returns this filename ''' starting_time = time.time() fastest_done = None m = Master() #m.connect('gibson.thep.lu.se', 'science') m.connect('130.235.189.249', 'science') print('Connected to server') m.clear_queues() savefile = ".{nodes}_{a_func}_{time:.0f}.pcom".format(nodes = design[0], a_func = design[1], time = time.time()) print('\nIncluding columns: ' + str(columns)) print('Target columns: ' + str(targets)) P, T = parse_file(filename, targetcols = targets, inputcols = columns, normalize = True, separator = separator, use_header = True) #columns = (2, -6, -5, -4, -3, -2, -1) #_P, T = parse_file(filename, targetcols = [4, 5], inputcols = (2, -4, -3, -2, -1), ignorerows = [0], normalize = True) #P, _T = parse_file(filename, targetcols = [4], inputcols = columns, ignorerows = [0], normalize = True) print("\nData set:") print("Number of patients with events: " + str(T[:, 1].sum())) print("Number of censored patients: " + str((1 - T[:, 1]).sum())) comsize = 3 * comsize_third #Make sure it is divisible by three (3*X will create X jobs) print('Number of members in the committee: ' + str(comsize)) print('Design used (size, function): ' + str(design)) #try: # pop_size = input('Population size [50]: ') #except SyntaxError as e: if 'population_size' not in train_kwargs: train_kwargs['population_size'] = 200 #print("Population size: " + str(train_kwargs['population_size'])) #try: # mutation_rate = input('Please input a mutation rate (0.25): ') #except SyntaxError as e: if 'mutation_chance' not in train_kwargs: train_kwargs['mutation_chance'] = 0.25 #print("Mutation rate: " + str(train_kwargs['mutation_chance'])) #try: # epochs = input("Number of generations (200): ") #except SyntaxError as e: if 'epochs' not in train_kwargs: train_kwargs['epochs'] = 100 for k, v in train_kwargs.iteritems(): print(str(k) + ": " + str(v)) #errorfunc = weighted_c_index_error errorfunc = c_index_error print("\nError function: " + errorfunc.__name__) print('\n Job status:\n') count = 0 all_counts = [] all_jobs = {} #trn_set = {} trn_idx = {} master_com = None allpats = P.copy() #allpats[:, 1] = 1 #This is the event column allpats_targets = T patvals = [[] for bah in xrange(len(allpats))] #Lambda times for _time in xrange(1): #Get an independant test set, 1/tau of the total. super_set, super_indices = get_cross_validation_sets(P, T, 1, binary_column = 1, return_indices = True) super_zip = zip(super_set, super_indices) #For every blind test group for (((TRN, TEST), (TRN_IDX, TEST_IDX)), _t) in zip(super_zip, xrange(len(super_set))): TRN_INPUTS = TRN[0] TRN_TARGETS = TRN[1] #TEST_INPUTS = TEST[0] #TEST_TARGETS = TEST[1] for com_num in xrange(comsize / 3): count += 1 all_counts.append(count) #trn_set[count] = (TRN_INPUTS, TRN_TARGETS) trn_idx[count] = TRN_IDX (netsize, hidden_func) = design com = build_feedforward_committee(3, len(P[0]), netsize, 1, hidden_function = hidden_func, output_function = 'linear') #1 is the column in the target array which holds the binary censoring information job = m.assemblejob((count, _time, _t, design), train_committee, com, train_evolutionary, TRN_INPUTS, TRN_TARGETS, binary_target = 1, error_function = errorfunc, **train_kwargs) all_jobs[count] = job m.sendjob(job[0], job[1], *job[2], **job[3]) #TIME TO RECEIVE THE RESULTS while(count > 0): print('Remaining jobs: {0}'.format(all_counts)) if fastest_done is None: ID, RESULT = m.getresult() #Blocks fastest_done = time.time() - starting_time else: RETURNVALUE = m.get_waiting_result(2 * fastest_done) if RETURNVALUE is not None: ID, RESULT = RETURNVALUE else: print('Timed out after {0} seconds. Putting remaining jobs {1} back on the queue.\nYou should restart \ the server after this session.'.format(fastest_done, all_counts)) for _c in all_counts: job = all_jobs[_c] m.sendjob(job[0], job[1], *job[2], **job[3]) continue #Jump to next iteration print('Result received! Processing...') _c, _time, _t, design = ID (com, trn_errors, vald_errors, internal_sets, internal_sets_indices) = RESULT if _c not in all_counts: print('This result [{0}] has already been processed.'.format(_c)) continue count -= 1 #TRN_INPUTS, TRN_TARGETS = trn_set[_c] TRN_IDX = trn_idx[_c] all_counts.remove(_c) com.set_training_sets([_set[0][0] for _set in internal_sets]) #first 0 gives training sets, second 0 gives inputs. if master_com is None: master_com = com else: master_com.nets.extend(com.nets) #Add this batch of networks #Now what we'd like to do is get the value for each patient in the #validation set, for all validation sets. Then I'd like to average the #result for each such patient, over the different validation sets. #1 for the validation set. Was given to the com.nets in the same type of iteration, so order is same # patvals will be order-consistent with P and T #for (_trn_set_indices, val_set_indices), net in zip(internal_sets_indices, com.nets): # for i in val_set_indices: # patvals_new[TRN_IDX[i]].append(com.risk_eval(P[TRN_IDX[i]], net = net)) for ((trn_in, trn_tar), (val_in, val_tar)), idx, net in zip(internal_sets, internal_sets_indices, com.nets): _C_ = -1 for valpat in val_in: _C_ += 1 i = TRN_IDX[idx[1][_C_]] pat = P[i] #print("Facit: \n" + str(valpat)) #print("_C_ = " + str(_C_)) #print("i: " + str(i)) #print("P[TRN_IDX[i]] : " + str(pat)) assert((pat == valpat).all()) patvals[i].append(com.risk_eval(pat, net = net)) #for pat, i in zip(allpats, xrange(len(patvals))): #We could speed this up by only reading every third dataset, but I'm not sure if they are ordered correctly... # for ((trn_in, trn_tar), (val_in, val_tar)), idx, net in zip(internal_sets, internal_sets_indices, com.nets): # _C_ = -1 # for valpat in val_in: # _C_ += 1 # if (pat == valpat).all(): #Checks each variable individually, all() does a boolean and between the results #print("Facit: \n" + str(valpat)) #print("Allpats-index = " + str(i)) #print("_C_ = " + str(_C_)) #print("idx_val[_C_]: " + str(idx[1][_C_])) #print("TRN_IDX[i]: " + str(TRN_IDX[idx[1][_C_]])) #print("P[TRN_IDX[i]] : " + str(P[TRN_IDX[idx[1][_C_]]])) # patvals[i].append(com.risk_eval(pat, net = net)) #Just to have something to count # break #Done with this data_set avg_vals = numpy.array([[numpy.mean(patval)] for patval in patvals]) #Need double brackets for dimensions to fit C-module #Now we have average validation ranks. do C-index on this avg_val_c_index = get_C_index(allpats_targets, avg_vals) print('Average com-validation C-Index so far : {0}'.format(avg_val_c_index)) print('Saving committee so far in {0}'.format(savefile)) with open(savefile, 'w') as FILE: pickle.dump(master_com, FILE) return savefile
def model_contest(filename, columns, targets, designs, comsize_third=5, repeat_times=20, testfilename=None, separator='\t', **train_kwargs): ''' model_contest(filename, columns, targets, designs) You must use column names! Here are example values for the input arguments: filename = "/home/gibson/jonask/Dropbox/Ann-Survival-Phd/Two_thirds_of_the_n4369_dataset_with_logs_lymf.txt" columns = ('age', 'log(1+lymfmet)', 'n_pos', 'tumsize', 'log(1+er_cyt)', 'log(1+pgr_cyt)', 'pgr_cyt_pos', 'er_cyt_pos', 'size_gt_20', 'er_cyt_pos', 'pgr_cyt_pos') targets = ['time', 'event'] Writes the results to '.winningdesigns_time.csv' and returns the filename ''' starting_time = time.time() fastest_done = None m = Master() #m.connect('gibson.thep.lu.se', 'science') m.connect('130.235.189.249', 'science') print('Connected to server') m.clear_queues() print('\nIncluding columns: ' + str(columns)) print('\nTarget columns: ' + str(targets)) P, T = parse_file(filename, targetcols=targets, inputcols=columns, normalize=True, separator=separator, use_header=True) if testfilename is not None: Ptest, Ttest = parse_file(testfilename, targetcols=targets, inputcols=columns, normalize=True, separator=separator, use_header=True) else: Ptest, Ttest = None, None print("\nData set:") print("Number of patients with events: " + str(T[:, 1].sum())) print("Number of censored patients: " + str((1 - T[:, 1]).sum())) print("T:" + str(T.shape)) print("P:" + str(P.shape)) if (Ptest is not None and Ttest is not None): print("\nExternal Test Data set:") print("Number of patients with events: " + str(Ttest[:, 1].sum())) print("Number of censored patients: " + str((1 - Ttest[:, 1]).sum())) print("Ttest:" + str(Ttest.shape)) print("Ptest:" + str(Ptest.shape)) comsize = 3 * comsize_third #Make sure it is divisible by three print('\nNumber of members in each committee: ' + str(comsize)) print('Designs used in testing (size, function): ' + str(designs)) # We can generate a test set from the data set, but usually we don't want that # Leave at 1 for no test set. val_pieces = 1 print('Cross-test pieces: ' + str(val_pieces)) cross_times = repeat_times print('Number of times to repeat procedure: ' + str(cross_times)) #try: # pop_size = input('Population size [50]: ') #except SyntaxError as e: if 'population_size' not in train_kwargs: train_kwargs['population_size'] = 50 #try: # mutation_rate = input('Please input a mutation rate (0.25): ') #except SyntaxError as e: if 'mutation_chance' not in train_kwargs: train_kwargs['mutation_chance'] = 0.25 #try: # epochs = input("Number of generations (200): ") #except SyntaxError as e: if 'epochs' not in train_kwargs: train_kwargs['epochs'] = 100 for k, v in train_kwargs.iteritems(): print(str(k) + ": " + str(v)) print('\n Job status:\n') count = 0 all_counts = [] all_jobs = {} tests = {} #trn_set = {} trn_idx = {} all_best = [] all_best_com_val = [] all_best_avg_trn = [] all_best_avg_val = [] all_best_design = [] all_best_test = [] #Lambda times for _time in xrange(cross_times): #Get an independant test set, 1/tau of the total. super_set, super_indices = get_cross_validation_sets( P, T, val_pieces, binary_column=1, return_indices=True) super_zip = zip(super_set, super_indices) all_best.append({}) all_best_com_val.append({}) all_best_avg_trn.append({}) all_best_avg_val.append({}) all_best_design.append({}) all_best_test.append({}) best = all_best[_time] best_com_val = all_best_com_val[_time] best_avg_trn = all_best_avg_trn[_time] best_avg_val = all_best_avg_val[_time] best_design = all_best_design[_time] best_test = all_best_test[_time] #For every blind test group for (((TRN, TEST), (TRN_IDX, TEST_IDX)), _t) in zip(super_zip, xrange(len(super_set))): TRN_INPUTS = TRN[0] TRN_TARGETS = TRN[1] TEST_INPUTS = TEST[0] TEST_TARGETS = TEST[1] #run each architecture design on a separate machine best[_t] = None best_com_val[_t] = 0 best_avg_trn[_t] = 0 best_avg_val[_t] = 0 best_design[_t] = None best_test[_t] = None for design in designs: count += 1 all_counts.append(count) (netsize, hidden_func) = design com = build_feedforward_committee(comsize, len(P[0]), netsize, 1, hidden_function=hidden_func, output_function='linear') tests[count] = (TEST_INPUTS, TEST_TARGETS) #trn_set[count] = (TRN_INPUTS, TRN_TARGETS) #print("TRN_IDX" + str(TRN_IDX)) #print("TEST_IDX" + str(TEST_IDX)) trn_idx[count] = TRN_IDX #1 is the column in the target array which holds the binary censoring information job = m.assemblejob((count, _time, _t, design), train_committee, com, train_evolutionary, TRN_INPUTS, TRN_TARGETS, binary_target=1, error_function=c_index_error, **train_kwargs) all_jobs[count] = job m.sendjob(job[0], job[1], *job[2], **job[3]) while (count > 0): print('Remaining jobs: {0}'.format(all_counts)) if fastest_done is None: ID, RESULT = m.getresult() #Blocks fastest_done = time.time() - starting_time else: RETURNVALUE = m.get_waiting_result(2 * fastest_done) if RETURNVALUE is not None: ID, RESULT = RETURNVALUE else: print( 'Timed out after {0} seconds. Putting remaining jobs {1} back on the queue.\n \ You should restart the server after this session.'.format( fastest_done, all_counts)) for _c in all_counts: job = all_jobs[_c] m.sendjob(job[0], job[1], *job[2], **job[3]) continue #Jump to next iteration print('Result received! Processing...') _c, _time, _t, design = ID (com, trn_errors, vald_errors, internal_sets, internal_sets_indices) = RESULT if _c not in all_counts: print('This result [{0}] has already been processed.'.format(_c)) continue count -= 1 TEST_INPUTS, TEST_TARGETS = tests[_c] #TRN_INPUTS, TRN_TARGETS = trn_set[_c] TRN_IDX = trn_idx[_c] all_counts.remove(_c) com.set_training_sets([ _set[0][0] for _set in internal_sets ]) #first 0 gives training sets, second 0 gives inputs. #Now what we'd like to do is get the value for each patient in the #validation set, for all validation sets. Then I'd like to average the #result for each such patient, over the different validation sets. allpats = [] allpats.extend(internal_sets[0][0][0]) #Extend with training inputs allpats.extend(internal_sets[0][1][0]) #Extend with validation inputs allpats_targets = [] allpats_targets.extend(internal_sets[0][0][1]) #training targets allpats_targets.extend(internal_sets[0][1][1]) #validation targets allpats_targets = numpy.array(allpats_targets) patvals = [[] for bah in xrange(len(allpats))] #print(len(patvals)) #print(len(internal_sets_indices)) #1 for the validation set. Was given to the com.nets in the same type of iteration, so order is same # Will be order consistent with P and T for ((trn_in, trn_tar), (val_in, val_tar)), idx, net in zip(internal_sets, internal_sets_indices, com.nets): _C_ = -1 for valpat in val_in: _C_ += 1 i = TRN_IDX[idx[1][_C_]] pat = P[i] #print("Facit: \n" + str(valpat)) #print("_C_ = " + str(_C_)) #print("i: " + str(i)) #print("P[TRN_IDX[i]] : " + str(pat)) assert ((pat == valpat).all()) patvals[i].append(com.risk_eval(pat, net=net)) #Need double brackets for dimensions to fit C-module avg_vals = numpy.array([[numpy.mean(patval)] for patval in patvals]) #Now we have average validation ranks. do C-index on this avg_val_c_index = get_C_index(T, avg_vals) trn_errors = numpy.array(trn_errors.values(), dtype=numpy.float64)**-1 vald_errors = numpy.array(vald_errors.values(), dtype=numpy.float64)**-1 avg_trn = numpy.mean(trn_errors) avg_val = numpy.mean(vald_errors) best = all_best[_time] best_com_val = all_best_com_val[_time] best_avg_trn = all_best_avg_trn[_time] best_avg_val = all_best_avg_val[_time] best_design = all_best_design[_time] best_test = all_best_test[_time] if avg_val_c_index > best_com_val[_t]: best[_t] = com best_com_val[_t] = avg_val_c_index best_avg_trn[_t] = avg_trn best_avg_val[_t] = avg_val best_design[_t] = design best_test[_t] = tests[_c] print('\nWinning designs') winnerfilename = '.winningdesigns_{0:.0f}.csv'.format(time.time()) with open(winnerfilename, 'w') as F: print( 'Average Training Perf, Average Validation Perf, Average Committee Validation Perf, Test Perf, Design:' ) F.write( 'Average Training Perf, Average Validation Perf, Average Committee Validation Perf, Test Perf, Design\n' ) for _time in xrange(len(all_best)): best = all_best[_time] best_com_val = all_best_com_val[_time] best_avg_trn = all_best_avg_trn[_time] best_avg_val = all_best_avg_val[_time] best_design = all_best_design[_time] best_test = all_best_test[_time] for _t in best.keys(): TEST_INPUTS, TEST_TARGETS = best_test[_t] com = best[_t] if len(TEST_INPUTS) > 0: #Need double brackets for dimensions to be right for numpy outputs = numpy.array([[com.risk_eval(inputs)] for inputs in TEST_INPUTS]) test_c_index = get_C_index(TEST_TARGETS, outputs) elif Ptest is not None and Ttest is not None: #Need double brackets for dimensions to be right for numpy outputs = numpy.array([[com.risk_eval(inputs)] for inputs in Ptest]) test_c_index = get_C_index(Ttest, outputs) else: test_c_index = 0 print('{trn}, {val}, {com_val}, {test}, {dsn}'.format( trn=best_avg_trn[_t], val=best_avg_val[_t], com_val=best_com_val[_t], test=test_c_index, dsn=best_design[_t])) F.write('{trn}, {val}, {com_val}, {test}, {dsn}\n'.format( trn=best_avg_trn[_t], val=best_avg_val[_t], com_val=best_com_val[_t], test=test_c_index, dsn=best_design[_t])) return winnerfilename