def nearest(point, cluster_centers): min_dist = FLOAT_MAX m = np.shape(cluster_centers)[0] for i in range(m): d = distance(point, cluster_centers[i, ]) if min_dist > d: min_dist = d return min_dist
def nearest(point, cluster_centers): '''计算point和cluster_centers之间的最小距离 input: point(mat):当前的样本点 cluster_centers(mat):当前已经初始化的聚类中心 output: min_dist(float):点point和当前的聚类中心之间的最短距离 ''' min_dist = FLOAT_MAX m = np.shape(cluster_centers)[0] # 当前已经初始化的聚类中心的个数 for i in xrange(m): # 计算point与每个聚类中心之间的距离 d = distance(point, cluster_centers[i, ]) # 选择最短距离 if min_dist > d: min_dist = d return min_dist
def nearest(point, cluster_centers): '''计算point和cluster_centers之间的最小距离 input: point(mat):当前的样本点 cluster_centers(mat):当前已经初始化的聚类中心 output: min_dist(float):点point和当前的聚类中心之间的最短距离 ''' min_dist = FLOAT_MAX m = np.shape(cluster_centers)[0] # 当前已经初始化的聚类中心的个数 for i in range(m): # 计算point与每个聚类中心之间的距离 d = distance(point, cluster_centers[i, ]) # 选择最短距离 if min_dist > d: min_dist = d return min_dist