Exemple #1
0
def buildTable(lams, cells, func):

    results = {}
    for cell in cells:
        newCell = Kali.CellID(func(cell))
        if lams.has_key(newCell):
            results[cell] = lams[newCell]

    return results
Exemple #2
0
def fakeCell(c):
    """
    Define 'fake' cell (useful) for grouping 
    """
    i = c.row()
    j = c.col()

    z = math.sqrt((i - 31.5)**2 + (j - 31.5)**2)
    z -= 5
    z = abs(z)
    z = int(z / 4)

    nc = Kali.CellID(c.calo(), c.area(), z, 1)

    return nc
Exemple #3
0
def mergefiles(filelist, outputfile):
    """
    The only one interesting function: merge Kali-databases
    """

    try:

        import KaliCalo.Kali as Kali
        histos = Kali.HistoMap()
        histos.read(filelist)
        histos.save(outputfile)

    except:
        return -1

    return 0
Exemple #4
0
    import os
    os.system(' ls -al ')
    parser = POOLCatalogParser()

    lfns = parser.lfns()

    pfns = parser.pfns()

    print 'LFNs: ', lfns
    print 'PFNS: ', pfns

    ## try to do something useful:

    import KaliCalo.Kali as Kali

    from KaliCalo.Pi0FillHistos import fillDataBase
    from GaudiKernel.SystemOfUnits import GeV

    lambdas = Kali.LambdaMap()

    histos, lambdas, badfiles = fillDataBase(lambdas,
                                             pfns,
                                             dbase_name='kali_db.gz',
                                             Unit=GeV)

    os.system(" ls -al ")

# =============================================================================
# The END
# =============================================================================
Exemple #5
0
def fakeCell(cell):

    nc = Kali.CellID(cell.calo(), cell.area(), cell.row(), 1)
    return nc
Exemple #6
0
def analyse(histomap, lambdamap, fitted=False, manager=None, nHistos=60):
    """
    Analyse the histograms 
    """
    histomap = getHistosFromDB(histomap)

    if not fitted:
        histomap = Task.fitHistos(histomap, manager, nHistos)

    keys = histomap.keys()
    keys.sort()
    for key in Cells.Zones:
        if key in keys: keys.remove(key)
        keys.insert(0, key)

    import sets

    badCells = sets.Set()
    notFitCells = sets.Set()
    lowCells = sets.Set()

    ikey = 0
    nFits = 0
    iCnt = Kali.Counter()
    for key in keys:

        ikey += 1

        if max(histomap[key].entries()) < 100:
            lowCells.add(key)
            continue

        hs = histomap[key]

        if key in Cells.Zones:

            r0 = FitUtils.getPi0Params(hs[0])
            r1 = FitUtils.getPi0Params(hs[1])
            r2 = FitUtils.getPi0Params(hs[2])

            if r0 and r1 and r2:
                print ' MASS : %-24.24s %-24.24s %-24.24s ' % (r0[1], r1[1],
                                                               r2[1]), key
                print ' SIGMA: %-24.24s %-24.24s %-24.24s ' % (r0[2], r1[2],
                                                               r2[2]), key
                print ' NUM0 : %-24.24s %-24.24s %-24.24s ' % (r0[0], r1[0],
                                                               r2[0]), key
                print ' S/B  : %-24.24s %-24.24s %-24.24s ' % (FitUtils.s2b(
                    hs[0]), FitUtils.s2b(hs[1]), FitUtils.s2b(hs[2])), key
                print '  '
            else:
                print 'No fit information available for ZONE: ', key

            continue

        result = None
        if hasattr(hs, 'result'): result = hs.result

        if not result:
            ## print ' no reliable fits for ',key
            notFitCells.add(key)
            continue

        iCnt += result[-1]

        r0 = FitUtils.getPi0Params(hs[0])
        r1 = FitUtils.getPi0Params(hs[1])
        r2 = FitUtils.getPi0Params(hs[2])

        r0 = r0 if 0 <= result[0] else None
        r1 = r1 if 0 <= result[1] else None
        r2 = r2 if 0 <= result[2] else None

        if r0 and r0[2].value() < 5:
            print r0, hs[0].GetName()

        if not r0 and not r1 and not r2:
            notFitCells.add(key)
            continue

        alpha = 1.0

        mass = Kali.VE(135, 135**2)
        sigma = Kali.VE(12, 12**2)
        corr = Kali.VE(1, 1**2)
        num = Kali.VE(1, 1**2)

        Used = False

        if r0 and (6 <= r0[2].value() <= 20) and (15 <= abs(r0[0].value())):
            m = r0[1]
            deltam = r0[1] - 135.0
            corr1 = 1.0 - alpha * deltam / r0[1]
            s = r0[2]
            if 0.00001 < corr1.error() < 0.50:
                corr = corr.mean(corr1)
                mass = mass.mean(m)
                if s.error() > 0.00001: sigma = sigma.mean(s)
                else: sigma.setValue(s.value())
                num = abs(r0[0])
                Used = True

        use = FitUtils.badParam(mass, sigma, num, corr) or not Used
        if r1 and use:
            m = r1[1]
            deltam = r1[1] - 135.0
            corr2 = 1.0 - alpha * deltam / r1[1]
            s = r1[2]
            if 0.00001 < corr2.error() < 0.50:
                corr = corr.mean(corr2)
                mass = mass.mean(m)
                if s.error() > 0.00001: sigma = sigma.mean(s)
                num += abs(r1[0])
                Used = True

        use = FitUtils.badParam(mass, sigma, num, corr) or not Used
        if r2 and use:
            m = r2[1]
            deltam = r2[1] - 135.0
            hc = hs.kappas()
            kappa = hc[1]
            corr3 = 1.0 - alpha * deltam / r2[1] / (1.0 - kappa)
            s = r2[2]
            if 0.00001 < corr3.error() < 0.50:
                corr = corr.mean(corr3)
                mass = mass.mean(m)
                if s.error() > 0.00001: sigma = sigma.mean(s)
                num += abs(r2[0])

        if not Used:
            badCells.add(key)
            continue

        lams = lambdamap[key]

        ## do not allow too large corrections per one step
        if corr.value() < 0.90: corr.setValue(0.90)
        if corr.value() > 1.10: corr.setValue(1.10)

        lam = corr * lams[-1]
        lams.append(lam.value())

        nFits = Kali.VE(iCnt.flagMean(), iCnt.flagRMS())

        mx = 100.0 / len(histomap)
        if random.uniform(0, 1.0) < mx and r0 and r1 and r2:
            print ' '
            print ' KEY   :', key, ikey, len(
                histomap), result, iCnt.flag(), nFits
            print ' NUM0  : %-24.24s %-24.24s %-24.24s ' % (r0[0], r1[0],
                                                            r2[0])
            print ' MASS  : %-24.24s %-24.24s %-24.24s ' % (
                r0[1], r1[1], r2[1]), corr, [
                    '%.3f' % l for l in lambdamap[key]
                ]
            print ' SIGMA : %-24.24s %-24.24s %-24.24s ' % (r0[2], r1[2],
                                                            r2[2])
            print ' S/B   : %-24.24s %-24.24s %-24.24s ' % (FitUtils.s2b(
                hs[0]), FitUtils.s2b(hs[1]), FitUtils.s2b(hs[2]))

    return (badCells, lowCells, notFitCells)
Exemple #7
0
#!/usr/bin/env python

import KaliCalo.Kali as Kali

histos = Kali.HistoMap()
lambdas = Kali.LambdaMap()

mydir = '/afs/cern.ch/user/i/ibelyaev/cmtuser/DaVinci_v25r2p1/Phys/KaliCalo/cmt/'

histos.read(mydir + 'histos_db.gz')

from KaliCalo.Analyse import analyse

analyse(histos, lambdas)

lambdas.save('lambdas_db.gz')