Exemple #1
0
    def test_instantiate(self):
        for j in range(10):
            batch = 1
            _data = TypeShape(
                DFloat, Shape((DimNames.BATCH, batch), (DimNames.UNITS, 20)))

            IOLabel.DS1 = 'DS1'
            IOLabel.DS2 = 'DS2'
            inputs = {
                IOLabel.DS1: (IOLabel.DATA, _data, 'Dataset0'),
                IOLabel.DS2: (IOLabel.DATA, _data, 'Dataset1')
            }

            outShape = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 10))
            outShape1 = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 15))
            outputs = {
                'out0': TypeShape(DFloat, outShape),
                'out1': TypeShape(DFloat, outShape1)
            }
            functions = [Merge, Dense]

            OPNN0 = OverParameterizedNeuralNetwork(
                **{
                    OverParameterizedNeuralNetwork.arg_INPUTS: inputs,
                    OverParameterizedNeuralNetwork.arg_OUTPUT_TARGETS: outputs,
                    OverParameterizedNeuralNetwork.arg_FUNCTIONS: functions,
                    OverParameterizedNeuralNetwork.arg_MAX_BRANCH: 2,
                })
            pb = OPNN0.get_pb()

            pb_OPNN = object.__new__(OverParameterizedNeuralNetwork)
            pb_OPNN.__setstate__(pb)

            self.assertEqual(OPNN0, pb_OPNN)

            OPNN1 = OverParameterizedNeuralNetwork(
                **{
                    OverParameterizedNeuralNetwork.arg_INPUTS: inputs,
                    OverParameterizedNeuralNetwork.arg_OUTPUT_TARGETS: outputs,
                    OverParameterizedNeuralNetwork.arg_FUNCTIONS: functions,
                    OverParameterizedNeuralNetwork.arg_MAX_BRANCH: 2,
                })
            for i in range(1):
                mutOPNN = OPNN0.recombine(OPNN1)[0]
                for f in mutOPNN.functions:
                    self.assertTrue(f.id_name in mutOPNN.meta_functions)
                functions = {f.id_name for f in mutOPNN.functions}
                for out_id, (label, f_id) in mutOPNN.output_mapping.items():
                    self.assertTrue(f_id in functions)
                for k in range(10):
                    mutOPNN = mutOPNN.mutate(1)[0]
                    for f in mutOPNN.functions:
                        self.assertTrue(f.id_name in mutOPNN.meta_functions)
                        if isinstance(f, Merge):
                            self.assertEqual(len(f.inputs), 2)
                        functions = {f.id_name for f in mutOPNN.functions}
                        for out_id, (label,
                                     f_id) in mutOPNN.output_mapping.items():
                            self.assertTrue(f_id in functions)
        pass
 def test_reachable(self):
     # target = TypeShape(DFloat, Shape((DimNames.BATCH, 1),
     #                                  (DimNames.UNITS, 20)))
     input_shape = TypeShape(
         DFloat,
         Shape((DimNames.BATCH, 1), (DimNames.HEIGHT, 32),
               (DimNames.WIDTH, 32), (DimNames.CHANNEL, 3)))
     depth = 8
     for i in range(1, 100):
         # input_shape = TypeShape(DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, i)))
         target = TypeShape(
             DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, i * 10)))
         print()
         print(input_shape)
         print(target)
         print(
             NeuralNetwork.reachable(input_nts=input_shape,
                                     target_nts=target,
                                     max_depth=depth,
                                     function_pool={Conv2D, Flatten}))
         print(
             list(
                 Dense.possible_output_shapes(
                     input_ntss={IOLabel.DEFAULT: input_shape},
                     target_output=target,
                     is_reachable=lambda x, y: NeuralNetwork.reachable(
                         x, y, depth - 1, {Dense, Merge}),
                 )))
     pass
Exemple #3
0
  def generateParameters(cls,
                         input_dict: Dict[str, Tuple[str, Dict[str, TypeShape], str]],
                         expected_outputs: Set[TypeShape],
                         variable_pool: dict = None) -> \
      Tuple[List[Dict[str, object]], List[float]]:
    default_input_label, default_input_ntss, _ = input_dict.get(IOLabel.MERGE_IN)
    other_input_label, other_input_ntss, _ = input_dict.get(IOLabel.MERGE_OTHER)
    default_input_nts = default_input_ntss[default_input_label]
    other_input_nts = other_input_ntss[other_input_label]

    if default_input_nts.dtype != other_input_nts.dtype:
      return [], []

    out_shape = Shape()

    for _dim in default_input_nts.shape.dim:
      if _dim.name == DimNames.CHANNEL or \
          _dim.name == DimNames.UNITS:
        out_shape.dim.append(Shape.Dim(_dim.name, _dim.size + other_input_nts.shape[_dim.name]))
      elif _dim.size != other_input_nts.shape[_dim.name]:
        return [], []
      else:
        out_shape.dim.append(Shape.Dim(_dim.name, _dim.size))

    input_mapping = dict([(l_in, (l_out, df_id_name)) for l_in, (l_out, _, df_id_name) in input_dict.items()])
    return [{cls.arg_INPUT_MAPPING: input_mapping,
             cls.arg_ATTRIBUTES: {cls.arg_OUT_NAMED_TYPE_SHAPES:
                                    {IOLabel.MERGE_OUT: TypeShape(default_input_nts.dtype, out_shape)}},
             }], [1.0]
Exemple #4
0
        def __init__(self, **kwargs):
            super(TestDBSqlite3.dummyModel, self).__init__(**kwargs)
            _data_nts = TypeShape(
                DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, 20)))
            _target_nts = TypeShape(
                DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, 10)))

            self.ci = ClassifierIndividualOPACDG(
                **{
                    NetworkIndividualInterface.arg_DATA_NTS: {
                        IOLabel.DATA: (_data_nts, 'Dataset'),
                        IOLabel.TARGET: (_target_nts, 'Dataset')
                    },
                })
            self.anc1 = ClassifierIndividualOPACDG(
                **{
                    NetworkIndividualInterface.arg_DATA_NTS: {
                        IOLabel.DATA: (_data_nts, 'Dataset'),
                        IOLabel.TARGET: (_target_nts, 'Dataset')
                    },
                })
            self.anc2 = ClassifierIndividualOPACDG(
                **{
                    NetworkIndividualInterface.arg_DATA_NTS: {
                        IOLabel.DATA: (_data_nts, 'Dataset'),
                        IOLabel.TARGET: (_target_nts, 'Dataset')
                    },
                })

            self._GENERATION = [self.ci]
            self._GENERATION_IDX = 1
    def test_instantiation_Conv2D_Pool2D_Flatten_Dense(self):
        for i in range(10):
            batch = 1
            _data = TypeShape(
                DFloat,
                Shape((DimNames.BATCH, batch), (DimNames.HEIGHT, 32),
                      (DimNames.WIDTH, 32), (DimNames.CHANNEL, 3)))
            _target = TypeShape(
                DFloat, Shape(
                    (DimNames.BATCH, batch),
                    (DimNames.UNITS, 10),
                ))
            outputs = {'out0': _target}
            IOLabel.DS = 'DS'
            inputs = {IOLabel.DS: (IOLabel.DATA, _data, 'Dataset')}
            functions = [Conv2D, Pooling2D, Flatten, Dense]
            NN = NeuralNetwork(
                **{
                    NeuralNetwork.arg_INPUTS: inputs,
                    NeuralNetwork.arg_OUTPUT_TARGETS: outputs,
                    NeuralNetwork.arg_FUNCTIONS: functions
                })
            self.assertIsNotNone(NN)
            pb = NN.get_pb()
            state = NN.__getstate__()

            f_ids = dict([(_id, None) for _, _id in NN.inputs.values()])
            for _f in NN.functions:
                f_ids[_f.id_name] = _f

            for _f in NN.functions:
                for _f_input, (other_output, other_id) in _f.inputs.items():
                    if other_id not in f_ids:
                        self.assertTrue(False)

            stack = [f_id for _, f_id in NN.output_mapping.values()]
            required_ids = set()
            while stack:
                f_id = stack.pop()
                required_ids.add(f_id)
                f_ = f_ids.get(f_id)
                if f_ is not None:
                    stack.extend([f_id for _, f_id in f_.inputs.values()])
            self.assertSetEqual(required_ids, set(f_ids.keys()))

            NN_pb = NeuralNetwork.__new__(NeuralNetwork)
            NN_pb.__setstate__(pb)
            self.assertIsNot(NN, NN_pb)

            NN_state = NeuralNetwork.__new__(NeuralNetwork)
            NN_state.__setstate__(state)
            self.assertIsNot(NN, NN_state)

            NN_mut = NN.mutate(100)
            self.assertIsNot(NN, NN_mut)
            self.assertNotEqual(NN, NN_mut)
            NN_mut = NN.mutate(0)
            self.assertIsNot(NN, NN_mut)
            self.assertNotEqual(NN, NN_mut)
Exemple #6
0
    def test_Conv2D(self):
        IOLabel.DUMMY1 = 'DUMMY1'
        IOLabel.DUMMY2 = 'DUMMY2'
        _shape = Shape((DN.BATCH, -1), (DN.WIDTH, 64), (DN.HEIGHT, 64),
                       (DN.CHANNEL, 4))
        shape_ = Shape((DN.BATCH, -1), (DN.WIDTH, 32), (DN.HEIGHT, 32),
                       (DN.CHANNEL, 6))
        _input = {IOLabel.DUMMY1: TypeShape(DDouble, _shape)}
        _output = TypeShape(DDouble, shape_)
        _expected_output = TypeShape(DDouble, shape_)
        pos = list(
            Conv2D.possible_output_shapes(
                input_ntss=_input,
                target_output=_output,
                is_reachable=lambda x, y: NeuralNetwork.reachable(
                    x, y, 1, {Conv2D})))
        self.assertTrue(
            any([_expected_output in out.values() for _, out, _ in pos]))
        self.assertTrue(all([len(remaining) == 0 for remaining, _, _ in pos]))
        self.assertTrue(
            all([
                IOLabel.CONV2D_IN in mapping
                and mapping[IOLabel.CONV2D_IN] == IOLabel.DUMMY1
                for _, _, mapping in pos
            ]))

        dummyDF = TestSubFunctions.DummyDF()
        dummyDF._outputs = {IOLabel.DUMMY1: TypeShape(DDouble, _shape)}
        for _, out, _ in pos:
            for parameters in Conv2D.generateParameters(
                    input_dict={
                        IOLabel.CONV2D_IN:
                        (IOLabel.DUMMY1, dummyDF.outputs, dummyDF.id_name)
                    },
                    expected_outputs={IOLabel.CONV2D_OUT: _output},
                    variable_pool={},
            )[0]:
                _conv2D = Conv2D(**parameters)
                pb = _conv2D.get_pb()
                self.assertIsNotNone(pb)
                state = _conv2D.__getstate__()
                self.assertIsNotNone(state)

                new_conv2D = Conv2D.__new__(Conv2D)
                new_conv2D.__setstate__(pb)
                self.assertEqual(_conv2D, new_conv2D)
                self.assertIsNot(_conv2D, new_conv2D)

                new_conv2D = Conv2D.__new__(Conv2D)
                new_conv2D.__setstate__(state)
                self.assertEqual(_conv2D, new_conv2D)
                self.assertIsNot(_conv2D, new_conv2D)

                m_conv2D = _conv2D.mutate(100)
                self.assertNotEqual(_conv2D, m_conv2D)
                m_conv2D = _conv2D.mutate(0)
                self.assertEqual(_conv2D, m_conv2D)
                self.assertIsNot(_conv2D, m_conv2D)
        pass
    def possible_output_shapes(cls,
                               input_ntss: Dict[str, TypeShape],
                               target_output: TypeShape,
                               is_reachable,
                               max_possibilities: int = 10,
                               **kwargs) -> \
        List[Tuple[Dict[str, TypeShape], Dict[str, TypeShape], Dict[str, str]]]:

        target_shape = target_output.shape

        for label, nts in input_ntss.items():
            if nts.dtype not in cls.allowedTypes:
                continue
            possible_sizes = []
            names = []
            invalid_dim = False
            for _dim in nts.shape.dim:
                target_size = target_shape[_dim.name]
                if _dim.name == DimNames.WIDTH or \
                    _dim.name == DimNames.HEIGHT:
                    lower_border = max(math.floor(_dim.size * cls.__min_f_hw),
                                       (min(2, target_size)
                                        if target_size is not None else 2))
                    upper_border = math.ceil(_dim.size * cls.__max_f_hw)
                    pool = list(range(lower_border + 1, upper_border))
                    border_pool = list({upper_border, lower_border})
                    if target_size is None or not (lower_border < target_size <
                                                   upper_border):
                        pool = sample(
                            pool,
                            k=min(max(max_possibilities - len(border_pool), 0),
                                  len(pool)))
                    else:
                        pool.remove(target_size)
                        pool = sample(
                            pool,
                            k=min(
                                max(max_possibilities - len(border_pool) - 1,
                                    0), len(pool))) + [target_size]
                    pool = pool + border_pool
                elif _dim.name == DimNames.CHANNEL or \
                    _dim.name == DimNames.BATCH:
                    pool = [_dim.size]
                else:
                    invalid_dim = True
                    break
                possible_sizes.append(pool)
                names.append(_dim.name)
            if invalid_dim:
                continue

            for comb in Shape.random_dimension_product(possible_sizes):
                out_nts = TypeShape(nts.dtype, Shape(*zip(names, comb)))
                if is_reachable(out_nts, target_output):
                    yield ({}, {
                        IOLabel.POOLING2D_OUT: out_nts
                    }, {
                        IOLabel.POOLING2D_IN: label
                    })
Exemple #8
0
    def test_Conv_Flatten_Pool_Dense_Merge(self):
        train_samples = 1000
        data_X, data_Y = make_classification(
            n_samples=train_samples,
            n_features=3072,
            n_classes=5,
            n_informative=4,
        )
        data_X = data_X.reshape((train_samples, 32, 32, 3))
        data_Y = tf.keras.utils.to_categorical(data_Y)
        data_X, data_Y = np.asarray(data_X), np.asarray(data_Y)
        train_X, test_X = data_X[:int(train_samples *
                                      .9), :], data_X[int(train_samples *
                                                          .9):, :]
        train_Y, test_Y = data_Y[:int(train_samples *
                                      .9), :], data_Y[int(train_samples *
                                                          .9):, :]

        batch = None
        dataset = UncorrelatedSupervised(
            train_X=train_X,
            train_Y=train_Y,
            test_X=test_X,
            test_Y=test_Y,
            batch=batch,
            typeShapes={
                IOLabel.DATA:
                TypeShape(
                    DFloat,
                    Shape((DimNames.HEIGHT, 32), (DimNames.WIDTH, 32),
                          (DimNames.CHANNEL, 3))),
                IOLabel.TARGET:
                TypeShape(DFloat, Shape((DimNames.UNITS, 5)))
            },
            name='Dataset')

        ci = ClassifierIndividualACDG(
            **{
                ClassifierIndividualACDG.arg_DATA_NTS:
                dict([(label, (nts, dataset.id_name))
                      for label, nts in dataset.outputs.items()]),
                ClassifierIndividualACDG.arg_NN_FUNCTIONS:
                [Conv2D, Flatten, Dense, Merge],
                ClassifierIndividualACDG.arg_MAX_NN_DEPTH:
                10,
            })

        framework = NVIDIATensorFlow(**{
            NVIDIATensorFlow.arg_DATA_SETS: [dataset],
        })

        ci.build_instance(framework)
        framework.accuracy(ci)
        framework.time()
        framework.memory()
        # framework.flops_per_sample()
        # framework.parameters()
        framework.reset()
Exemple #9
0
  def possible_output_shapes(cls,
                             input_ntss: Dict[str, TypeShape],
                             target_output: TypeShape,
                             is_reachable,
                             max_possibilities: int = 10,
                             **kwargs) -> \
      List[Tuple[Dict[str, TypeShape], Dict[str, TypeShape], Dict[str, str]]]:

    target_shape = target_output.shape

    for label, nts in input_ntss.items():
      if nts.dtype not in cls.allowedTypes or \
          nts.dtype != target_output.dtype:
        continue

      possible_sizes = []
      names = []
      invalid_dim = False
      for _dim in nts.shape.dim:
        target_size = target_shape[_dim.name]
        if _dim.name == DimNames.WIDTH or \
            _dim.name == DimNames.HEIGHT or \
            _dim.name == DimNames.BATCH or \
            _dim.name == DimNames.TIME:
          pool = [_dim.size]
        elif _dim.name == DimNames.CHANNEL or \
            _dim.name == DimNames.UNITS:
          lower_border = max(math.floor(_dim.size * cls.__min_f), (min(2, target_size)
                                                                   if target_size is not None else 2))
          upper_border = math.ceil(_dim.size * cls.__max_f)
          pool = list(range(lower_border + 1, upper_border))
          border_pool = list({lower_border, upper_border})
          if target_size is None or not (lower_border < (target_size - _dim.size) < upper_border):
            pool = sample(pool, k=min(max(max_possibilities - len(border_pool), 0), len(pool)))
          else:
            pool.remove(target_size - _dim.size)
            pool = sample(pool, k=min(max(max_possibilities - len(border_pool) - 1, 0), len(pool))) + [
              target_size - _dim.size]
          pool = pool + border_pool
        else:
          invalid_dim = True
          break
        possible_sizes.append(pool)
        names.append(_dim.name)
      if invalid_dim:
        continue

      for dim_combination in Shape.random_dimension_product(possible_sizes):
        remaining_shape = Shape(*zip(names, dim_combination))
        out_nts = TypeShape(nts.dtype, Shape(*zip(names, [
          d_.size + _d.size if _d.name == DimNames.CHANNEL or _d.name == DimNames.UNITS else _d.size for d_, _d in
          zip(remaining_shape.dim, nts.shape.dim)])))
        if is_reachable(out_nts, target_output):
          yield ({IOLabel.MERGE_OTHER: TypeShape(nts.dtype, remaining_shape)},
                 {IOLabel.MERGE_OUT: out_nts},
                 {IOLabel.MERGE_IN: label})
Exemple #10
0
    def test_Flatten(self):
        IOLabel.DUMMY1 = 'DUMMY1'
        IOLabel.DUMMY2 = 'DUMMY2'
        _shape = Shape((DN.BATCH, -1), (DN.WIDTH, 8), (DN.HEIGHT, 8),
                       (DN.CHANNEL, 32))
        shape_ = Shape((DN.BATCH, -1), (DN.UNITS, 2048))
        _input = {IOLabel.DUMMY1: TypeShape(DDouble, _shape)}
        _output = TypeShape(DDouble, shape_)
        _expected_output = TypeShape(DDouble, shape_)
        pos = list(
            Flatten.possible_output_shapes(
                input_ntss=_input,
                target_output=_output,
                is_reachable=lambda x, y: NeuralNetwork.reachable(
                    x, y, 1, {Flatten})))
        self.assertTrue(
            any([_expected_output in out.values() for _, out, _ in pos]))
        self.assertTrue(all([len(remaining) == 0 for remaining, _, _ in pos]))
        self.assertTrue(
            all([
                IOLabel.FLATTEN_IN in mapping
                and mapping[IOLabel.FLATTEN_IN] == IOLabel.DUMMY1
                for _, _, mapping in pos
            ]))

        dummyDF = TestSubFunctions.DummyDF()
        dummyDF._outputs = {IOLabel.DUMMY1: TypeShape(DDouble, _shape)}
        for _, out, _ in pos:
            for parameters in Flatten.generateParameters(
                    input_dict={
                        IOLabel.FLATTEN_IN:
                        (IOLabel.DUMMY1, dummyDF.outputs, dummyDF.id_name)
                    },
                    expected_outputs={IOLabel.DUMMY2: _output},
                    variable_pool={},
            )[0]:
                _flatten = Flatten(**parameters)
                pb = _flatten.get_pb()
                self.assertIsNotNone(pb)
                state = _flatten.__getstate__()
                self.assertIsNotNone(state)

                new_flatten = Flatten.__new__(Flatten)
                new_flatten.__setstate__(pb)
                self.assertEqual(_flatten, new_flatten)
                self.assertIsNot(_flatten, new_flatten)

                new_flatten = Flatten.__new__(Flatten)
                new_flatten.__setstate__(state)
                self.assertEqual(_flatten, new_flatten)
                self.assertIsNot(_flatten, new_flatten)
Exemple #11
0
    def test_recombination(self):
        batch = 1
        _data = TypeShape(DFloat,
                          Shape((DimNames.BATCH, batch), (DimNames.UNITS, 20)))

        IOLabel.DS1 = 'DS1'
        IOLabel.DS2 = 'DS2'
        inputs = {
            IOLabel.DS1: (IOLabel.DATA, _data, 'Dataset0'),
            IOLabel.DS2: (IOLabel.DATA, _data, 'Dataset1')
        }

        outShape = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 10))
        outShape1 = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 15))
        outputs = {
            'out0': TypeShape(DFloat, outShape),
            'out1': TypeShape(DFloat, outShape1)
        }
        functions = [Merge, Dense]
        OPNN0 = OverParameterizedNeuralNetwork(
            **{
                OverParameterizedNeuralNetwork.arg_INPUTS: inputs,
                OverParameterizedNeuralNetwork.arg_OUTPUT_TARGETS: outputs,
                OverParameterizedNeuralNetwork.arg_FUNCTIONS: functions,
                OverParameterizedNeuralNetwork.arg_MAX_BRANCH: 2,
            })
        pb = OPNN0.get_pb()

        pb_OPNN = object.__new__(OverParameterizedNeuralNetwork)
        pb_OPNN.__setstate__(pb)

        self.assertEqual(OPNN0, pb_OPNN)

        OPNN1 = OverParameterizedNeuralNetwork(
            **{
                OverParameterizedNeuralNetwork.arg_INPUTS: inputs,
                OverParameterizedNeuralNetwork.arg_OUTPUT_TARGETS: outputs,
                OverParameterizedNeuralNetwork.arg_FUNCTIONS: functions,
                OverParameterizedNeuralNetwork.arg_MAX_BRANCH: 2,
            })

        mut1 = OPNN0.recombine(OPNN1)[0]
        mut2 = OPNN1.recombine(OPNN0)[0]
        self.assertEqual(len(mut1.meta_functions), len(mut2.meta_functions))
        mut3 = mut1.recombine(mut2)[0]
        mut4 = mut2.recombine(mut1)[0]
        self.assertEqual(len(mut3.meta_functions), len(mut4.meta_functions))
        self.assertEqual(len(mut3.meta_functions), len(mut1.meta_functions))
        self.assertEqual(len(mut4.meta_functions), len(mut1.meta_functions))
        pass
    def test_instantiation_USD_outputTypeShapes(self):
        batch = 3
        _data = TypeShape(
            DFloat,
            Shape((DimNames.BATCH, batch), (DimNames.CHANNEL, 3),
                  (DimNames.HEIGHT, 4), (DimNames.WIDTH, 5)))

        outShape = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 60))
        self.assertRaises(
            InvalidFunctionType, NeuralNetwork, **{
                NeuralNetwork.arg_INPUTS: {'data_in', (_data, 'Dataset')},
                NeuralNetwork.arg_OUTPUT_TARGETS: {
                    'out0': TypeShape(DFloat, outShape)
                }
            })
Exemple #13
0
  def __init__(self, **kwargs):
    super(SupervisedData, self).__init__(**kwargs)
    self.batch = kwargs.get(self.arg_BATCH)
    self._namedOutputShapes = kwargs.get(self.arg_SHAPES)
    for _shape in self._namedOutputShapes.values():
      _shape.shape.dim.insert(0, Shape.Dim(Shape.Dim.Names.BATCH, self.batch))
    self.train_X = kwargs.get(self.arg_TRAINX)
    self.train_Y = kwargs.get(self.arg_TRAINY)
    self.test_X = kwargs.get(self.arg_TESTX)
    self.test_Y = kwargs.get(self.arg_TESTY)
    self.valid_X = kwargs.get(self.arg_VALIDX)
    self.valid_Y = kwargs.get(self.arg_VALIDY)
    if self.train_X is None and self.test_X is None and self.valid_X is None:
      raise Exception('All input data is None!')
    if self.train_X is not None:
      dimension_sizes = next(iter(self.train_X)).shape
    elif self.test_X is not None:
      dimension_sizes = next(iter(self.test_X)).shape
    elif self.valid_X is not None:
      dimension_sizes = next(iter(self.valid_X)).shape

    if (self.train_X is not None and next(iter(self.train_X)).shape != dimension_sizes) or \
        (self.test_X is not None and next(iter(self.test_X)).shape != dimension_sizes) or \
        (self.valid_X is not None and next(iter(self.valid_X)).shape != dimension_sizes):
      raise Exception('Train test and valid data must have the same size!')
    self.idx = 0
    self.len = 1
    self.data_X = self.test_X
    self.data_Y = self.test_Y
    self.state = ''
Exemple #14
0
def pb2val(pb):
    whichone = pb.WhichOneof("v")
    if whichone == 'shape_val':
        shape_ = Shape.__new__(Shape)
        shape_.__setstate__(getattr(pb, whichone))
        return shape_
    elif whichone == 'type_val':
        return BaseType.pb2cls(getattr(pb, whichone))[0]
    elif whichone == 'list_val':
        _list = [pb2val(_pb) for _pb in pb.list_val.v]
        return np.asarray(_list) if getattr(pb.list_val, 'numpy',
                                            False) else _list
    elif whichone == 'set_val':
        return set([pb2val(_pb) for _pb in pb.set_val.v])
    elif whichone == 'tuple_val':
        return tuple([pb2val(_pb) for _pb in pb.tuple_val.v])
    elif whichone == 'nts_val':
        return TypeShape.from_pb(pb.nts_val)
    elif whichone == 'dict_val':
        # return dict([(elem.name, pb2val(elem.v)) for elem in pb.dict_val.vs])
        return dict([pb2val(elem) for elem in pb.dict_val.v])
    else:
        attr = str(whichone)
        if attr != 'None':
            return getattr(pb, attr)
        return None
    def test_step(self):
        node_ts = TypeShape(DFloat,
                            Shape((DimNames.BATCH, None), (DimNames.UNITS, 1)))
        inputs = {
            '%i:%i:%i' % (w, h, c):
            ('node', node_ts.__copy__(), 'data_src_%i:%i:%i' % (w, h, c))
            for w in range(5) for h in range(7) for c in range(3)
        }
        output_target = {'%02i' % (c): node_ts.__copy__() for c in range(11)}
        self.assertRaises(
            InvalidFunctionType, WeightAgnosticNeuralNetwork, **{
                WeightAgnosticNeuralNetwork.arg_INPUTS: inputs,
                WeightAgnosticNeuralNetwork.arg_OUTPUT_TARGETS: output_target,
            })

        objA = WeightAgnosticNeuralNetwork(
            **{
                WeightAgnosticNeuralNetwork.arg_INPUTS: inputs,
                WeightAgnosticNeuralNetwork.arg_OUTPUT_TARGETS: output_target,
                WeightAgnosticNeuralNetwork.arg_FUNCTIONS: [Perceptron],
            })
        self.assertIsNotNone(objA)

        mut_obj = objA.step(3)
        self.assertIsInstance(mut_obj, list)
        self.assertGreaterEqual(len(mut_obj), 1)
        mut_obj = mut_obj[0]
        self.assertIsInstance(mut_obj, WeightAgnosticNeuralNetwork)
        for _ in range(20):
            mut_obj = mut_obj.step(randint(1, 10))
            self.assertIsInstance(mut_obj, list)
            self.assertGreaterEqual(len(mut_obj), 1)
            mut_obj = mut_obj[0]
            self.assertIsInstance(mut_obj, WeightAgnosticNeuralNetwork)
    def test_pb(self):
        train_samples = 10
        train_X = [np.random.rand(3, 4, 5) for _ in range(train_samples)]
        train_Y = [np.random.rand(2) for _ in range(train_samples)]

        batch = 3
        ds0 = UncorrelatedSupervised(train_X=train_X,
                                     train_Y=train_Y,
                                     batch=batch,
                                     typeShapes={
                                         IOLabel.DEFAULT:
                                         TypeShape(
                                             DFloat,
                                             Shape((DimNames.CHANNEL, 3),
                                                   (DimNames.HEIGHT, 4),
                                                   (DimNames.WIDTH, 5)))
                                     })
        pb = ds0.get_pb()
        self.assertIsNotNone(pb)
        ds1 = UncorrelatedSupervised.__new__(UncorrelatedSupervised)
        ds1.__setstate__(pb)

        for data0, data1 in [(ds0.train_X, ds1.train_X),
                             (ds0.train_Y, ds1.train_Y),
                             (ds0.test_X, ds1.test_X),
                             (ds0.test_Y, ds1.test_Y)]:
            self.assertTrue(data0 is None and data1 is None
                            or len(data0) == len(data1) and not any([
                                not np.array_equal(_d0, _d1)
                                for _d0, _d1 in zip(data0, data1)
                            ]))
        self.assertEqual(ds0.idx, ds1.idx)
        self.assertEqual(ds0.len, ds1.len)
        self.assertEqual(ds0._id_name, ds1._id_name)
        self.assertIsNotNone(ds0, ds1)
Exemple #17
0
 def max_transform(cls, nts):
     if nts.dtype not in cls.allowedTypes:
         return None
     s = Shape()
     result = TypeShape(nts.dtype, s)
     for _dim in nts.shape.dim:
         if _dim.name == DimNames.BATCH or \
             _dim.name == DimNames.CHANNEL:
             s.dim.append(Shape.Dim(_dim.name, _dim.size))
         elif _dim.name == DimNames.WIDTH or \
             _dim.name == DimNames.HEIGHT:
             s.dim.append(
                 Shape.Dim(_dim.name,
                           int(math.floor(_dim.size * cls.__max_f_hw))))
         else:
             return None
     return result
Exemple #18
0
    def test_Dense(self):
        IOLabel.DUMMY = 'DUMMY'
        IOLabel.DUMMY2 = 'DUMMY2'
        _shape = Shape((DN.BATCH, -1), (DN.UNITS, 16))
        _input = {IOLabel.DUMMY: TypeShape(DDouble, _shape)}
        _output = TypeShape(DDouble, _shape)
        _expected_output = TypeShape(DDouble, _shape)
        pos = list(
            Dense.possible_output_shapes(
                input_ntss=_input,
                target_output=_output,
                is_reachable=lambda x, y: NeuralNetwork.reachable(
                    x, y, 1, {Dense})))
        self.assertTrue(
            any([_expected_output in out.values() for _, out, _ in pos]))
        self.assertTrue(all([len(remaining) == 0 for remaining, _, _ in pos]))
        self.assertTrue(
            all([
                IOLabel.DENSE_IN in mapping
                and mapping[IOLabel.DENSE_IN] == IOLabel.DUMMY
                for _, _, mapping in pos
            ]))

        dummyDF = TestSubFunctions.DummyDF()
        dummyDF._outputs = {IOLabel.DUMMY: TypeShape(DDouble, _shape)}
        for _, out, _ in pos:
            for parameters in Dense.generateParameters(
                    input_dict={
                        IOLabel.DENSE_IN:
                        (IOLabel.DUMMY, dummyDF.outputs, dummyDF.id_name)
                    },
                    expected_outputs={IOLabel.DUMMY2: _output},
                    variable_pool={},
            )[0]:
                # check if parameters are correct?
                _dense = Dense(**parameters)
                pb = _dense.get_pb()
                self.assertIsNotNone(pb)
                state = _dense.__getstate__()
                self.assertIsNotNone(state)

                new_dense = Dense.__new__(Dense)
                new_dense.__setstate__(pb)
                self.assertEqual(_dense, new_dense)
                self.assertIsNot(_dense, new_dense)

                new_dense = Dense.__new__(Dense)
                new_dense.__setstate__(state)
                self.assertEqual(_dense, new_dense)
                self.assertIsNot(_dense, new_dense)

                m_dense = _dense.mutate(100)
                self.assertNotEqual(_dense, m_dense)
                m_dense = _dense.mutate(0)
                self.assertEqual(_dense, m_dense)
        pass
    def test_simple_path(self):
        ntss = {
            IOLabel.DEFAULT:
            TypeShape(DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, 23)))
        }
        target = TypeShape(DFloat,
                           Shape((DimNames.BATCH, 1), (DimNames.UNITS, 154)))
        depth = 5
        debug_node = 'debug'

        before = time.time()
        for _ in range(1):
            NeuralNetwork.reachable(next(iter(ntss)), target, depth,
                                    {Dense, Merge})
        print('Time', time.time() - before)

        print(
            NeuralNetwork.reachable(next(iter(ntss)), target, depth,
                                    {Dense, Merge}))
        print(ntss)
        runs = 10000
        fails = 0
        for i in range(runs):
            blueprint = nx.DiGraph()
            blueprint.add_node(debug_node, ntss=ntss, DataFlowObj=None)
            out_node, nts_id, nodes = next(
                NeuralNetwork.simple_path(
                    input_node=debug_node,
                    input_ntss=ntss,
                    output_shape=target,
                    output_label=IOLabel.DEFAULT,
                    blueprint=blueprint,
                    min_depth=0,
                    max_depth=depth,
                    function_pool={Dense, Merge},
                ), (None, None, None))
            if out_node is None:
                # print(i, 'Error')
                fails += 1
            # else:
            #   print(i, 'Success')
        print('percentage failed:', fails / runs)
        pass
Exemple #20
0
 def __setstate__(self, state):
   if isinstance(state, str) or isinstance(state, bytes):
     _proto_ob = TypeShapeProto()
     _proto_ob.ParseFromString(state)
   elif isinstance(state, TypeShapeProto):
     _proto_ob = state
   else:
     return
   self.dtype = BaseType.pb2cls(_proto_ob.dtype_val)
   self.shape = Shape.__new__(Shape)
   self.shape.__setstate__(_proto_ob.shape_val)
Exemple #21
0
    def test_classifier_individualOPACDG(self):
        train_samples = 1
        train_X = [np.random.rand(20) for _ in range(train_samples)]
        train_Y = [np.random.rand(10) for _ in range(train_samples)]

        batch = 1
        dataset = UncorrelatedSupervised(
            train_X=train_X,
            train_Y=train_Y,
            batch=batch,
            typeShapes={
                IOLabel.DATA: TypeShape(DFloat, Shape((DimNames.UNITS, 20))),
                IOLabel.TARGET: TypeShape(DFloat, Shape((DimNames.UNITS, 10)))
            },
            name='Dataset')
        ci = ClassifierIndividualOPACDG(
            **{
                ClassifierIndividualOPACDG.arg_DATA_NTS:
                dict([(ts_label, (ts, dataset.id_name))
                      for ts_label, ts in dataset.outputs.items()])
            })
        self.assertIsNotNone(ci)
        ci.metrics['debug'] = .3

        pb = ci.get_pb()
        self.assertIsNotNone(pb)
        state = ci.__getstate__()
        self.assertIsNotNone(state)

        state_obj = ClassifierIndividualOPACDG.__new__(
            ClassifierIndividualOPACDG)
        state_obj.__setstate__(state)
        self.assertIsNotNone(state_obj)
        self.assertIsNot(ci, state_obj)
        self.assertEqual(ci, state_obj)

        pb_obj = ClassifierIndividualOPACDG.__new__(ClassifierIndividualOPACDG)
        pb_obj.__setstate__(pb)
        self.assertIsNotNone(pb_obj)
        self.assertIsNot(ci, pb_obj)
        self.assertEqual(ci, pb_obj)
Exemple #22
0
 def max_transform(cls, nts):
   if nts.dtype not in cls.allowedTypes:
     return None
   s = Shape()
   image, vektor = False, False
   result = TypeShape(nts.dtype, s)
   for _dim in nts.shape.dim:
     if (_dim.name == DimNames.BATCH
         or _dim.name == DimNames.WIDTH
         or _dim.name == DimNames.HEIGHT
     ):
       s.dim.append(Shape.Dim(_dim.name, _dim.size))
     elif _dim.name == DimNames.UNITS and not image:
       s.dim.append(Shape.Dim(_dim.name, int(math.ceil(_dim.size * (1 + cls.__max_f)))))  # pessimistic estimation
       vektor = True
     elif _dim.name == DimNames.CHANNEL and not vektor:
       s.dim.append(Shape.Dim(_dim.name, int(math.ceil(_dim.size * (1 + cls.__max_f)))))  # pessimistic estimation
       image = True
     else:
       return None
   return result
    def test_dataSamplingTrain(self):
        train_samples = 10
        train_X = [np.random.rand(3, 4, 5) for _ in range(train_samples)]
        train_Y = [np.random.rand(2) for _ in range(train_samples)]

        batch = 3
        dataset = UncorrelatedSupervised(train_X=train_X,
                                         train_Y=train_Y,
                                         batch=batch,
                                         typeShapes={
                                             IOLabel.DEFAULT:
                                             TypeShape(
                                                 DFloat,
                                                 Shape((DimNames.CHANNEL, 3),
                                                       (DimNames.HEIGHT, 4),
                                                       (DimNames.WIDTH, 5)))
                                         })
        for i in ['train', 'Train', 'TRAIN', 1, True]:
            for idx, d_set in enumerate(dataset(i)):
                self.assertEqual(len(d_set), 2)
                self.assertEqual(len(d_set[IOLabel.DATA]), batch)
                self.assertEqual(len(d_set[IOLabel.TARGET]), batch)
                self.assertTupleEqual(d_set[IOLabel.DATA][0].shape,
                                      train_X[0].shape)
                self.assertTupleEqual(d_set[IOLabel.TARGET][0].shape,
                                      train_Y[0].shape)
                if idx > 20:
                    break
        for i in [{
                'train': 1
        }, {
                'Train': 1
        }, {
                'TRAIN': 1
        }, {
                'train': True
        }, {
                'Train': True
        }, {
                'TRAIN': True
        }]:
            for idx, d_set in enumerate(dataset(**i)):
                self.assertEqual(len(d_set), 2)
                self.assertEqual(len(d_set[IOLabel.DATA]), batch)
                self.assertEqual(len(d_set[IOLabel.TARGET]), batch)
                self.assertTupleEqual(d_set[IOLabel.DATA][0].shape,
                                      train_X[0].shape)
                self.assertTupleEqual(d_set[IOLabel.TARGET][0].shape,
                                      train_Y[0].shape)
                if idx > 20:
                    break
            pass
    def test_recombine(self):
        node_ts = TypeShape(DFloat,
                            Shape((DimNames.BATCH, None), (DimNames.UNITS, 1)))
        inputs = {
            '%i:%i:%i' % (w, h, c):
            ('node', node_ts.__copy__(), 'data_src_%i:%i:%i' % (w, h, c))
            for w in range(5) for h in range(7) for c in range(3)
        }
        output_target = {'%02i' % (c): node_ts.__copy__() for c in range(10)}
        self.assertRaises(
            InvalidFunctionType, WeightAgnosticNeuralNetwork, **{
                WeightAgnosticNeuralNetwork.arg_INPUTS: inputs,
                WeightAgnosticNeuralNetwork.arg_OUTPUT_TARGETS: output_target,
            })

        objA = WeightAgnosticNeuralNetwork(
            **{
                WeightAgnosticNeuralNetwork.arg_INPUTS: inputs,
                WeightAgnosticNeuralNetwork.arg_OUTPUT_TARGETS: output_target,
                WeightAgnosticNeuralNetwork.arg_FUNCTIONS: [Perceptron],
            })
        self.assertIsNotNone(objA)
        objB = WeightAgnosticNeuralNetwork(
            **{
                WeightAgnosticNeuralNetwork.arg_INPUTS: inputs,
                WeightAgnosticNeuralNetwork.arg_OUTPUT_TARGETS: output_target,
                WeightAgnosticNeuralNetwork.arg_FUNCTIONS: [Perceptron],
            })
        self.assertIsNotNone(objB)

        rec_objA = objA.recombine(objB)
        self.assertIsInstance(rec_objA, list)
        self.assertGreaterEqual(len(rec_objA), 2)
        rec_objA = rec_objA[0]
        self.assertIsInstance(rec_objA, WeightAgnosticNeuralNetwork)
        rec_objB = objB.recombine(objA)
        self.assertIsInstance(rec_objB, list)
        self.assertGreaterEqual(len(rec_objB), 2)
        rec_objB = rec_objB[0]
        self.assertIsInstance(rec_objB, WeightAgnosticNeuralNetwork)

        for _ in range(20):
            rec_objA = rec_objA.recombine(rec_objB)
            self.assertIsInstance(rec_objA, list)
            self.assertGreaterEqual(len(rec_objA), 2)
            rec_objA = rec_objA[0]
            self.assertIsInstance(rec_objA, WeightAgnosticNeuralNetwork)
            rec_objB = rec_objB.recombine(rec_objA)
            self.assertIsInstance(rec_objB, list)
            self.assertGreaterEqual(len(rec_objB), 2)
            rec_objB = rec_objB[0]
            self.assertIsInstance(rec_objB, WeightAgnosticNeuralNetwork)
Exemple #25
0
 def min_transform(cls, nts):
   if nts.dtype not in cls.allowedTypes:
     return None
   s = Shape()
   result = TypeShape(nts.dtype, s)
   units = 1
   num_units = 0
   for _dim in nts.shape.dim:
     if _dim.name == DimNames.BATCH:
       s.dim.append(Shape.Dim(_dim.name, _dim.size))
     elif (_dim.name == DimNames.WIDTH or
           _dim.name == DimNames.HEIGHT or
           _dim.name == DimNames.CHANNEL):
       units *= _dim.size
     elif _dim.name == DimNames.UNITS:
       units *= _dim.size
       num_units += 1
     else:
       return None
   if num_units == 1:
     return None
   s.dim.append(Shape.Dim(DimNames.UNITS, units))
   return result
Exemple #26
0
  def possible_output_shapes(cls,
                             input_ntss: Dict[str, TypeShape],
                             target_output: TypeShape,
                             is_reachable,
                             max_possibilities: int = 10,
                             **kwargs) -> \
      List[Tuple[Dict[str, TypeShape], Dict[str, TypeShape], Dict[str, str]]]:

    allowed_in_dimensions = {DimNames.CHANNEL, DimNames.WIDTH, DimNames.HEIGHT}

    # target_shape = target_output.shape

    for label, nts in input_ntss.items():
      if nts.dtype not in cls.allowedTypes:
        continue
      units = 1
      invalid_dim = False
      batch = False
      batch_size = -1
      for _dim in nts.shape.dim:
        if _dim.name in allowed_in_dimensions:
          units *= _dim.size
        elif _dim.name == DimNames.BATCH:
          batch = True
          batch_size = _dim.size
        else:
          invalid_dim = True
          break
      if invalid_dim:
        continue
      out_nts = TypeShape(nts.dtype, Shape((DimNames.BATCH, batch_size),
                                           (DimNames.UNITS, units))) if batch else \
        TypeShape(nts.dtype, Shape((DimNames.UNITS, units)))
      if is_reachable(out_nts, target_output):
        yield ({},
               {IOLabel.FLATTEN_OUT: out_nts},
               {IOLabel.FLATTEN_IN: label})
    def test_func_children(self):
        ntss = {
            IOLabel.DEFAULT:
            TypeShape(
                DFloat,
                Shape((DimNames.BATCH, 1), (DimNames.HEIGHT, 10),
                      (DimNames.WIDTH, 10), (DimNames.CHANNEL, 2)))
        }
        target = TypeShape(
            DFloat,
            Shape(
                (DimNames.BATCH, 1), (DimNames.UNITS, 200)
                # (DimNames.HEIGHT, 32),
                # (DimNames.WIDTH, 32),
                # (DimNames.CHANNEL, 3)
            ))

        _f = Flatten
        for _, out_nts, _ in _f.possible_output_shapes(
                ntss, target,
                lambda x, y: NeuralNetwork.reachable(x, y, 0, {Flatten}), 10):
            print(next(iter(out_nts.values())))

        pass
Exemple #28
0
    def subclassTest(self, cls):
        obj = cls()
        pb = obj.get_pb()
        self.assertIsNotNone(pb)
        new_obj = Regularisation.__new__(Regularisation)
        new_obj.__setstate__(pb)
        self.assertEqual(obj, new_obj)
        self.assertIsNot(obj, new_obj)
        state = obj.__getstate__()
        new_obj = Regularisation.__new__(Regularisation)
        new_obj.__setstate__(state)
        self.assertEqual(obj, new_obj)
        self.assertIsNot(obj, new_obj)

        obj.attr = {
            'int_val':
            random.randint(0, 100),
            'float_val':
            random.random(),
            'string_val':
            "asdfasdf",
            'bool_val':
            True,
            'bool_val2':
            False,
            'bytes_val':
            random.randint(0, 100).to_bytes(10, byteorder='big'),
            'shape_val':
            Shape((DN.BATCH, -1), (DN.WIDTH, 16), (DN.HEIGHT, 16),
                  (DN.WIDTH, 3)),
            'dtype_val':
            DDouble,
            'list_val': [1, 2, 3, 4],
        }
        pb = obj.get_pb()
        self.assertIsNotNone(pb)
        new_obj = Regularisation.__new__(Regularisation)
        new_obj.__setstate__(pb)
        self.assertEqual(obj, new_obj)
        self.assertIsNot(obj, new_obj)
        state = obj.__getstate__()
        new_obj = Regularisation.__new__(Regularisation)
        new_obj.__setstate__(state)
        self.assertEqual(obj, new_obj)
        self.assertIsNot(obj, new_obj)

        del obj.attr[obj.attr.keys().__iter__().__next__()]
        self.assertNotEqual(obj, new_obj)
    def test_instantiate(self):
        node_ts = TypeShape(DFloat,
                            Shape((DimNames.BATCH, None), (DimNames.UNITS, 1)))
        inputs = {
            '%i:%i:%i' % (w, h, c):
            ('node', node_ts.__copy__(), 'data_src_%i:%i:%i' % (w, h, c))
            for w in range(5) for h in range(7) for c in range(3)
        }
        output_target = {'%02i' % (c): node_ts.__copy__() for c in range(11)}
        self.assertRaises(
            InvalidFunctionType, WeightAgnosticNeuralNetwork, **{
                WeightAgnosticNeuralNetwork.arg_INPUTS: inputs,
                WeightAgnosticNeuralNetwork.arg_OUTPUT_TARGETS: output_target,
            })

        obj = WeightAgnosticNeuralNetwork(
            **{
                WeightAgnosticNeuralNetwork.arg_INPUTS: inputs,
                WeightAgnosticNeuralNetwork.arg_OUTPUT_TARGETS: output_target,
                WeightAgnosticNeuralNetwork.arg_FUNCTIONS: [Perceptron],
            })
        self.assertIsNotNone(obj)

        _pb = obj.get_pb()
        self.assertIsNotNone(_pb)
        pb_obj = object.__new__(WeightAgnosticNeuralNetwork)
        pb_obj.__setstate__(_pb)

        self.assertEqual(obj, pb_obj)
        self.assertIsNot(obj, pb_obj)

        _state = obj.__getstate__()
        self.assertIsNotNone(_state)
        state_obj = object.__new__(WeightAgnosticNeuralNetwork)
        state_obj.__setstate__(_state)

        self.assertEqual(obj, state_obj)
        self.assertIsNot(obj, state_obj)
Exemple #30
0
    def test_pb(self):
        dummy_in = TestFunction.dummySubClass(variables=[
            self.randomVariable() for _ in range(random.randint(1, 3))
        ],
                                              input_mapping={},
                                              attributes={
                                                  'int_val':
                                                  random.randint(0, 100),
                                                  'float_val': random.random(),
                                                  'string_val': "asdfasdf",
                                                  'bool_val': True,
                                              },
                                              dtype=DDouble)
        IOLabel.OTHER = 'OTHER'
        obj = TestFunction.dummySubClass(
            variables=[
                self.randomVariable() for _ in range(random.randint(1, 3))
            ],
            input_mapping={
                IOLabel.DEFAULT: (IOLabel.DEFAULT, dummy_in),
                IOLabel.OTHER: (IOLabel.DEFAULT, dummy_in.id_name)
            },
            attributes={
                'int_val':
                random.randint(0, 100),
                'float_val':
                random.random(),
                'string_val':
                "asdfasdf",
                'bool_val':
                True,
                'bool_val2':
                False,
                'bytes_val':
                random.randint(0, 100).to_bytes(10, byteorder='big'),
                'shape_val':
                Shape((DN.BATCH, -1), (DN.WIDTH, 16), (DN.HEIGHT, 16),
                      (DN.WIDTH, 3)),
                'dtype_val':
                DDouble,
                'list_val': [1, 2, 3, 4],
            },
            dtype=DDouble)
        pb = obj.get_pb()
        self.assertIsNotNone(pb)
        state = obj.__getstate__()
        self.assertIsNotNone(state)
        new_obj = Function.get_instance(state)
        self.assertIs(obj, new_obj)

        new_obj = Function.__new__(Function)
        new_obj.__setstate__(state)
        self.assertEqual(obj, new_obj)
        self.assertIsNot(obj, new_obj)
        new_obj = Function.__new__(Function)
        new_obj.__setstate__(pb)
        self.assertEqual(obj, new_obj)
        self.assertIsNot(obj, new_obj)
        new_obj2 = Function.get_instance(state)
        self.assertIs(new_obj, new_obj2)

        pb.attr[0].v.int_val = -1
        new_obj = Function.__new__(Function)
        new_obj.__setstate__(pb)
        self.assertNotEqual(obj, new_obj)