def minDistance(features, codebooks): speaker = 0 distmin = np.inf for k in range(np.shape(codebooks)[0]): D = EUDistance(features, codebooks[k, :, :]) dist = np.sum(np.min(D, axis=1)) / (np.shape(D)[0]) if dist < distmin: distmin = dist speaker = k return speaker
def distance_min(feature, codebook): distmini = np.inf speakernum = 0 for l in range(np.shape(codebook)[0]): Dis = EUDistance(feature, codebook[l, :, :]) dista = np.sum(np.min(Dis, axis=1)) / (np.shape(Dis)[0]) if dista < distmini: speakernum = l distmini = dista return speakernum