Exemple #1
0
    def __init__(self,
                 input_dim=None,
                 output_dim=1,
                 init_path=None,
                 opt_algo='gd',
                 learning_rate=1e-2,
                 l2_weight=0,
                 random_seed=None):
        Model.__init__(self)
        # 声明参数
        init_vars = [('w', [input_dim, output_dim], 'xavier', dtype),
                     ('b', [output_dim], 'zero', dtype)]
        self.graph = tf.Graph()
        with self.graph.as_default():
            if random_seed is not None:
                tf.set_random_seed(random_seed)
            # 用稀疏的placeholder
            self.X = tf.sparse_placeholder(dtype)
            self.y = tf.placeholder(dtype)
            # init参数
            self.vars = init_var_map(init_vars, init_path)

            w = self.vars['w']
            b = self.vars['b']
            # sigmoid(wx+b)
            xw = tf.sparse_tensor_dense_matmul(self.X, w)
            logits = tf.reshape(xw + b, [-1])
            self.y_prob = tf.sigmoid(logits)

            self.loss = tf.reduce_mean(
                tf.nn.sigmoid_cross_entropy_with_logits(labels=self.y, logits=logits)) + \
                        l2_weight * tf.nn.l2_loss(xw)
            self.optimizer = get_optimizer(opt_algo, learning_rate, self.loss)
            # GPU设定
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            self.sess = tf.Session(config=config)
            # 初始化图里的参数
            tf.global_variables_initializer().run(session=self.sess)
Exemple #2
0
    def __init__(self, field_sizes=None, embed_size=10, layer_sizes=None, layer_acts=None, drop_out=None,
                 embed_l2=None, layer_l2=None, init_path=None, opt_algo='gd', learning_rate=1e-2, random_seed=None):
        Model.__init__(self)
        init_vars = []
        num_inputs = len(field_sizes)
        for i in range(num_inputs):
            init_vars.append(('embed_%d' % i, [field_sizes[i], embed_size], 'xavier', dtype))
        num_pairs = int(num_inputs * (num_inputs - 1) / 2)
        node_in = num_inputs * embed_size + num_pairs
        # node_in = num_inputs * (embed_size + num_inputs)
        for i in range(len(layer_sizes)):
            init_vars.append(('w%d' % i, [node_in, layer_sizes[i]], 'xavier', dtype))
            init_vars.append(('b%d' % i, [layer_sizes[i]], 'zero', dtype))
            node_in = layer_sizes[i]
        self.graph = tf.Graph()
        with self.graph.as_default():
            if random_seed is not None:
                tf.set_random_seed(random_seed)
            self.X = [tf.sparse_placeholder(dtype) for i in range(num_inputs)]
            self.y = tf.placeholder(dtype)
            self.keep_prob_train = 1 - np.array(drop_out)
            self.keep_prob_test = np.ones_like(drop_out)
            self.layer_keeps = tf.placeholder(dtype)
            self.vars = init_var_map(init_vars, init_path)
            w0 = [self.vars['embed_%d' % i] for i in range(num_inputs)]
            xw = tf.concat([tf.sparse_tensor_dense_matmul(self.X[i], w0[i]) for i in range(num_inputs)], 1)
            xw3d = tf.reshape(xw, [-1, num_inputs, embed_size])

            row = []
            col = []
            for i in range(num_inputs-1):
                for j in range(i+1, num_inputs):
                    row.append(i)
                    col.append(j)
            # batch * pair * k
            p = tf.transpose(
                # pair * batch * k
                tf.gather(
                    # num * batch * k
                    tf.transpose(
                        xw3d, [1, 0, 2]),
                    row),
                [1, 0, 2])
            # batch * pair * k
            q = tf.transpose(
                tf.gather(
                    tf.transpose(
                        xw3d, [1, 0, 2]),
                    col),
                [1, 0, 2])
            p = tf.reshape(p, [-1, num_pairs, embed_size])
            q = tf.reshape(q, [-1, num_pairs, embed_size])
            ip = tf.reshape(tf.reduce_sum(p * q, [-1]), [-1, num_pairs])

            # simple but redundant
            # batch * n * 1 * k, batch * 1 * n * k
            # ip = tf.reshape(
            #     tf.reduce_sum(
            #         tf.expand_dims(xw3d, 2) *
            #         tf.expand_dims(xw3d, 1),
            #         3),
            #     [-1, num_inputs**2])
            l = tf.concat([xw, ip], 1)

            for i in range(len(layer_sizes)):
                wi = self.vars['w%d' % i]
                bi = self.vars['b%d' % i]
                l = tf.nn.dropout(
                    activate(
                        tf.matmul(l, wi) + bi,
                        layer_acts[i]),
                    self.layer_keeps[i])

            l = tf.squeeze(l)
            self.y_prob = tf.sigmoid(l)

            self.loss = tf.reduce_mean(
                tf.nn.sigmoid_cross_entropy_with_logits(logits=l, labels=self.y))
            if layer_l2 is not None:
                self.loss += embed_l2 * tf.nn.l2_loss(xw)
                for i in range(len(layer_sizes)):
                    wi = self.vars['w%d' % i]
                    self.loss += layer_l2[i] * tf.nn.l2_loss(wi)
            self.optimizer = get_optimizer(opt_algo, learning_rate, self.loss)

            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            self.sess = tf.Session(config=config)
            tf.global_variables_initializer().run(session=self.sess)
Exemple #3
0
    def __init__(self,
                 field_sizes=None,
                 embed_size=10,
                 filter_sizes=None,
                 layer_acts=None,
                 drop_out=None,
                 init_path=None,
                 opt_algo='gd',
                 learning_rate=1e-2,
                 random_seed=None):
        Model.__init__(self)
        init_vars = []
        num_inputs = len(field_sizes)
        for i in range(num_inputs):
            init_vars.append(('embed_%d' % i, [field_sizes[i],
                                               embed_size], 'xavier', dtype))
        init_vars.append(('f1', [embed_size, filter_sizes[0], 1,
                                 2], 'xavier', dtype))
        init_vars.append(('f2', [embed_size, filter_sizes[1], 2,
                                 2], 'xavier', dtype))
        init_vars.append(('w1', [2 * 3 * embed_size, 1], 'xavier', dtype))
        init_vars.append(('b1', [1], 'zero', dtype))

        self.graph = tf.Graph()
        with self.graph.as_default():
            if random_seed is not None:
                tf.set_random_seed(random_seed)
            self.X = [tf.sparse_placeholder(dtype) for i in range(num_inputs)]
            self.y = tf.placeholder(dtype)
            self.keep_prob_train = 1 - np.array(drop_out)
            self.keep_prob_test = np.ones_like(drop_out)
            self.layer_keeps = tf.placeholder(dtype)
            self.vars = init_var_map(init_vars, init_path)
            w0 = [self.vars['embed_%d' % i] for i in range(num_inputs)]
            xw = tf.concat([
                tf.sparse_tensor_dense_matmul(self.X[i], w0[i])
                for i in range(num_inputs)
            ], 1)
            l = xw

            l = tf.transpose(tf.reshape(l, [-1, num_inputs, embed_size, 1]),
                             [0, 2, 1, 3])
            f1 = self.vars['f1']
            l = tf.nn.conv2d(l, f1, [1, 1, 1, 1], 'SAME')
            l = tf.transpose(
                max_pool_4d(tf.transpose(l, [0, 1, 3, 2]),
                            int(num_inputs / 2)), [0, 1, 3, 2])
            f2 = self.vars['f2']
            l = tf.nn.conv2d(l, f2, [1, 1, 1, 1], 'SAME')
            l = tf.transpose(max_pool_4d(tf.transpose(l, [0, 1, 3, 2]), 3),
                             [0, 1, 3, 2])
            l = tf.nn.dropout(
                activate(tf.reshape(l, [-1, embed_size * 3 * 2]),
                         layer_acts[0]), self.layer_keeps[0])
            w1 = self.vars['w1']
            b1 = self.vars['b1']
            l = tf.matmul(l, w1) + b1

            l = tf.squeeze(l)
            self.y_prob = tf.sigmoid(l)

            self.loss = tf.reduce_mean(
                tf.nn.sigmoid_cross_entropy_with_logits(logits=l,
                                                        labels=self.y))
            self.optimizer = get_optimizer(opt_algo, learning_rate, self.loss)

            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            self.sess = tf.Session(config=config)
            tf.global_variables_initializer().run(session=self.sess)
Exemple #4
0
    def __init__(self,
                 field_sizes=None,
                 embed_size=10,
                 layer_sizes=None,
                 layer_acts=None,
                 drop_out=None,
                 embed_l2=None,
                 layer_l2=None,
                 init_path=None,
                 opt_algo='gd',
                 learning_rate=1e-2,
                 random_seed=None,
                 layer_norm=True):
        Model.__init__(self)
        init_vars = []
        num_inputs = len(field_sizes)
        for i in range(num_inputs):
            init_vars.append(('embed_%d' % i, [field_sizes[i],
                                               embed_size], 'xavier', dtype))
        num_pairs = int(num_inputs * (num_inputs - 1) / 2)
        node_in = num_inputs * embed_size + num_pairs
        init_vars.append(('kernel', [embed_size, num_pairs,
                                     embed_size], 'xavier', dtype))
        for i in range(len(layer_sizes)):
            init_vars.append(('w%d' % i, [node_in,
                                          layer_sizes[i]], 'xavier', dtype))
            init_vars.append(('b%d' % i, [layer_sizes[i]], 'zero', dtype))
            node_in = layer_sizes[i]
        self.graph = tf.Graph()
        with self.graph.as_default():
            if random_seed is not None:
                tf.set_random_seed(random_seed)
            self.X = [tf.sparse_placeholder(dtype) for i in range(num_inputs)]
            self.y = tf.placeholder(dtype)
            self.keep_prob_train = 1 - np.array(drop_out)
            self.keep_prob_test = np.ones_like(drop_out)
            self.layer_keeps = tf.placeholder(dtype)
            self.vars = init_var_map(init_vars, init_path)
            w0 = [self.vars['embed_%d' % i] for i in range(num_inputs)]
            xw = tf.concat([
                tf.sparse_tensor_dense_matmul(self.X[i], w0[i])
                for i in range(num_inputs)
            ], 1)
            xw3d = tf.reshape(xw, [-1, num_inputs, embed_size])

            row = []
            col = []
            for i in range(num_inputs - 1):
                for j in range(i + 1, num_inputs):
                    row.append(i)
                    col.append(j)
            # batch * pair * k
            p = tf.transpose(
                # pair * batch * k
                tf.gather(
                    # num * batch * k
                    tf.transpose(xw3d, [1, 0, 2]),
                    row),
                [1, 0, 2])
            # batch * pair * k
            q = tf.transpose(tf.gather(tf.transpose(xw3d, [1, 0, 2]), col),
                             [1, 0, 2])
            # b * p * k
            p = tf.reshape(p, [-1, num_pairs, embed_size])
            # b * p * k
            q = tf.reshape(q, [-1, num_pairs, embed_size])
            # k * p * k
            k = self.vars['kernel']

            # batch * 1 * pair * k
            p = tf.expand_dims(p, 1)
            # batch * pair
            kp = tf.reduce_sum(
                # batch * pair * k
                tf.multiply(
                    # batch * pair * k
                    tf.transpose(
                        # batch * k * pair
                        tf.reduce_sum(
                            # batch * k * pair * k
                            tf.multiply(p, k),
                            -1),
                        [0, 2, 1]),
                    q),
                -1)

            #
            # if layer_norm:
            #     # x_mean, x_var = tf.nn.moments(xw, [1], keep_dims=True)
            #     # xw = (xw - x_mean) / tf.sqrt(x_var)
            #     # x_g = tf.Variable(tf.ones([num_inputs * embed_size]), name='x_g')
            #     # x_b = tf.Variable(tf.zeros([num_inputs * embed_size]), name='x_b')
            #     # x_g = tf.Print(x_g, [x_g[:10], x_b])
            #     # xw = xw * x_g + x_b
            #     p_mean, p_var = tf.nn.moments(op, [1], keep_dims=True)
            #     op = (op - p_mean) / tf.sqrt(p_var)
            #     p_g = tf.Variable(tf.ones([embed_size**2]), name='p_g')
            #     p_b = tf.Variable(tf.zeros([embed_size**2]), name='p_b')
            #     # p_g = tf.Print(p_g, [p_g[:10], p_b])
            #     op = op * p_g + p_b

            l = tf.concat([xw, kp], 1)
            for i in range(len(layer_sizes)):
                wi = self.vars['w%d' % i]
                bi = self.vars['b%d' % i]
                l = tf.nn.dropout(
                    activate(tf.matmul(l, wi) + bi, layer_acts[i]),
                    self.layer_keeps[i])

            l = tf.squeeze(l)
            self.y_prob = tf.sigmoid(l)

            self.loss = tf.reduce_mean(
                tf.nn.sigmoid_cross_entropy_with_logits(logits=l,
                                                        labels=self.y))
            if layer_l2 is not None:
                self.loss += embed_l2 * tf.nn.l2_loss(xw)  #tf.concat(w0, 0))
                for i in range(len(layer_sizes)):
                    wi = self.vars['w%d' % i]
                    self.loss += layer_l2[i] * tf.nn.l2_loss(wi)
            self.optimizer = get_optimizer(opt_algo, learning_rate, self.loss)

            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            self.sess = tf.Session(config=config)
            tf.global_variables_initializer().run(session=self.sess)
Exemple #5
0
    def __init__(self,
                 field_sizes=None,
                 embed_size=10,
                 layer_sizes=None,
                 layer_acts=None,
                 drop_out=None,
                 embed_l2=None,
                 layer_l2=None,
                 init_path=None,
                 opt_algo='gd',
                 learning_rate=1e-2,
                 random_seed=None):
        Model.__init__(self)
        init_vars = []
        num_inputs = len(field_sizes)
        for i in range(num_inputs):
            init_vars.append(('embed_%d' % i, [field_sizes[i],
                                               embed_size], 'xavier', dtype))
        node_in = num_inputs * embed_size
        for i in range(len(layer_sizes)):
            init_vars.append(('w%d' % i, [node_in,
                                          layer_sizes[i]], 'xavier', dtype))
            init_vars.append(('b%d' % i, [layer_sizes[i]], 'zero', dtype))
            node_in = layer_sizes[i]
        self.graph = tf.Graph()
        with self.graph.as_default():
            if random_seed is not None:
                tf.set_random_seed(random_seed)
            self.X = [tf.sparse_placeholder(dtype) for i in range(num_inputs)]
            self.y = tf.placeholder(dtype)
            self.keep_prob_train = 1 - np.array(drop_out)
            self.keep_prob_test = np.ones_like(drop_out)
            self.layer_keeps = tf.placeholder(dtype)
            self.vars = init_var_map(init_vars, init_path)
            w0 = [self.vars['embed_%d' % i] for i in range(num_inputs)]
            xw = tf.concat([
                tf.sparse_tensor_dense_matmul(self.X[i], w0[i])
                for i in range(num_inputs)
            ], 1)
            l = xw

            for i in range(len(layer_sizes)):
                wi = self.vars['w%d' % i]
                bi = self.vars['b%d' % i]
                print(l.shape, wi.shape, bi.shape)
                l = tf.nn.dropout(
                    activate(tf.matmul(l, wi) + bi, layer_acts[i]),
                    self.layer_keeps[i])

            l = tf.squeeze(l)
            self.y_prob = tf.sigmoid(l)

            self.loss = tf.reduce_mean(
                tf.nn.sigmoid_cross_entropy_with_logits(logits=l,
                                                        labels=self.y))
            if layer_l2 is not None:
                self.loss += embed_l2 * tf.nn.l2_loss(xw)
                for i in range(len(layer_sizes)):
                    wi = self.vars['w%d' % i]
                    self.loss += layer_l2[i] * tf.nn.l2_loss(wi)
            self.optimizer = get_optimizer(opt_algo, learning_rate, self.loss)

            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            self.sess = tf.Session(config=config)
            tf.global_variables_initializer().run(session=self.sess)