Exemple #1
0
    def __prediction(self, extractor: AppearanceExtractor, classifier: Classifier, predict_season: int) -> \
            Dict[Player, MultiLayerResult]:
        """ Execute the prediction phase of the Appearance Layer.

        Arguments:
            extractor (AppearanceExtractor): The extractor which delivers the prediction data.
            classifier (Classifier): A classifier which classifies players as either Mol or non-Mol based on how often
                they appear.
            predict_season (int): For which season we make the prediction.

        Returns:
            A dictionary with as key the players that participated in the prediction season and as value a
            MultiLayerResult which contains the predictions.
        """
        all_predictions = dict()
        predict_data = extractor.get_predict_data()
        if not predict_data:
            return EmptyMultiLayer().predict(predict_season, 0, set())

        for player in get_players_in_season(predict_season):
            if player in predict_data:
                predictions = []
                for data in predict_data[player]:
                    predictions.append(classifier.predict_proba([data]))
                all_predictions[player] = MultiLayerResult(np.array(predictions), False)
            else:
                all_predictions[player] = MultiLayerResult(np.array([]), True)

        return all_predictions
Exemple #2
0
    def __prediction(self, extractor: AppearanceExtractor,
                     non_mol_kde: gaussian_kde, mol_kde: gaussian_kde,
                     predict_season: int) -> Dict[Player, MultiLayerResult]:
        """ Execute the prediction phase of the Appearance Layer.

        Arguments:
            extractor (AppearanceExtractor): The extractor which delivers the prediction data.
            non_mol_kde (gaussian_kde): The Kernel Density Estimator for non-Mol appearance values.
            mol_kde (gaussian_kde): The Kernel Density Estimator for Mol appearance values.
            predict_season (int): For which season we make the prediction.

        Returns:
            A dictionary with as key the players that participated in the prediction season and as value a
            MultiLayerResult which contains the predictions.
        """
        all_predictions = dict()
        predict_data = extractor.get_predict_data()
        if not predict_data:
            return EmptyMultiLayer().predict(predict_season, 0, set())

        min_value = self.get_boundary(non_mol_kde, mol_kde, len(predict_data),
                                      self.__cdf_cutoff / 2, self.MIN_VALUE,
                                      self.MAX_VALUE)
        max_value = self.get_boundary(non_mol_kde, mol_kde, len(predict_data),
                                      1 - self.__cdf_cutoff / 2,
                                      self.MIN_VALUE, self.MAX_VALUE)
        for player in get_players_in_season(predict_season):
            if player in predict_data:
                predictions = []
                for data in predict_data[player]:
                    data = min(max(data, min_value), max_value)
                    non_mol_likelihood = non_mol_kde.pdf(data)[0] * (
                        len(predict_data) - 1) / len(predict_data)
                    mol_likelihood = mol_kde.pdf(data)[0] / len(predict_data)
                    likelihood = mol_likelihood / (non_mol_likelihood +
                                                   mol_likelihood)
                    predictions.append(likelihood)
                all_predictions[player] = MultiLayerResult(
                    np.array(predictions), False)
            else:
                all_predictions[player] = MultiLayerResult(np.array([]), True)

        return all_predictions