Exemple #1
0
def check(train_images):
    global patch_dim, image_dim
    WB, zca_white, avg = lt.load_features('../LinearDecoder/theta.txt')
    w = WB[0][0]
    b = WB[0][1]
    print 'zca_white:', zca_white.shape
    print 'w:', w.shape
    print 'b:', b.shape
    print 'avg:', avg.shape
    conv_images = train_images[:, :, :, :8]
    convolved_features = convolve(patch_dim, 400, conv_images, w, b, zca_white, avg)
    for _ in range(1000):
        feature_num = random.randint(0, 399)
        image_num = random.randint(0, 7)
        image_row = random.randint(0, image_dim - patch_dim)
        image_col = random.randint(0, image_dim - patch_dim)
        patch = conv_images[image_row:image_row + patch_dim, image_col:image_col + patch_dim, :, image_num]
        patch = np.concatenate((patch[:, :, 0].flatten(), patch[:, :, 1].flatten(), patch[:, :, 2].flatten()))
        patch = patch.reshape((patch.size, 1))
        patch = patch - avg
        patch = zca_white.dot(patch)
        print patch.shape
        features = w.dot(patch) + b.reshape((b.shape[0], 1))
        print features.shape
        features = sigmoid(features)
        print features.shape
        print '*******************'
        print features.shape
        print convolved_features.shape
        print feature_num, image_num, image_row, image_col
        if np.abs(features[feature_num, 0] - convolved_features[feature_num, image_num, image_row, image_col]) > 1e-9:
            print('Convolved feature does not match activation from autoencoder\n')
            print('Feature Number    : %d\n', feature_num)
            print('Image Number      : %d\n', image_num)
            print('Image Row         : %d\n', image_row)
            print('Image Column      : %d\n', image_col)
            print('Convolved feature : %0.5f\n', convolved_features[feature_num, image_num, image_row, image_col])
            print('Sparse AE feature : %0.5f\n', features[feature_num, 0])
            print('Convolved feature does not match activation from autoencoder')
    print 'Congratulations! Your convolution code passed the test.'
    
    test_matrix = np.arange(64).reshape(8, 8)
    expected_matrix = np.array([[np.mean(test_matrix[0:4, 0:4]), np.mean(test_matrix[0:4, 4:8])],
    [np.mean(test_matrix[4:8, 0:4]), np.mean(test_matrix[4:8, 4:8])]])
    test_matrix = np.reshape(test_matrix, (1, 1, 8, 8))
    pooled_features = mean_pool(4, test_matrix)
    if not (pooled_features == expected_matrix).all():
        print "Pooling incorrect"
        print "Expected matrix"
        print expected_matrix
        print "Got"
        print pooled_features
    print 'Congratulations! Your pooling code passed the test.'
Exemple #2
0
        print "Pooling incorrect"
        print "Expected matrix"
        print expected_matrix
        print "Got"
        print pooled_features
    print 'Congratulations! Your pooling code passed the test.'


if __name__ == '__main__':
    train_images, train_labels, train_numImages = load_train_images()
    # train_images = train_images[:,:,:,:100]
    # train_labels = train_labels[:100]
    # train_numImages = 100
    check(train_images)
    test_images, test_labels, test_numImages = load_test_images()
    WB, zcaWhite, avg = lt.load_features('../LinearDecoder/theta.txt')
    w = WB[0][0]
    b = WB[0][1]
    try:
        pooledTrainFeatures = np.load('pooledTrainFeatures.npy')
    except:
        print 'start train cnn...', time.time()
        pooledTrainFeatures = cnn(train_images, train_numImages, w, b, zcaWhite, avg)
        print pooledTrainFeatures
        print pooledTrainFeatures.shape
        np.save('pooledTrainFeatures', pooledTrainFeatures)
        print 'train cnn over...', time.time()
    print pooledTrainFeatures.shape
    try:
        mat = np.genfromtxt('softmax.mat')
    except: