def loadData(self): l = LoadData() data_cluster = l.loadData('wine-clustering.csv') self.std_scaler = StandardScaler() self.min_max_scaler = MinMaxScaler() data_cluster[data_cluster.columns] = self.std_scaler.fit_transform( data_cluster) data_cluster[data_cluster.columns] = self.min_max_scaler.fit_transform( data_cluster) # print(data_cluster.mean()) # data = data_cluster.to_numpy() # np.savetxt('data.txt', data, fmt='%.1f') # coverience_matrix = np.dot(np.transpose(data), # data) / (data.shape[1] - 1) # np.savetxt('matrix.txt', coverience_matrix, fmt='%.1f') # pca self.pca_2 = PCA(2) self.pca_2_result = self.pca_2.fit_transform(data_cluster) self.data = data_cluster
def loadData(self, filename): l = LoadData() self.data = l.loadData(filename)
# encoding=utf-8 ''' Created on 2018年1月6日 @author: yufangzheng ''' from LoadData import LoadData; from Model import SVD; if __name__ == "__main__": feature = 100 steps = 30 alpha = 0.009 lambda1 = 0.01 ld = LoadData() filename_train = '/home/zwp/work/Dataset/ws/train/sparseness5/training1.txt' filename_test = '/home/zwp/work/Dataset/ws/test/sparseness5/test1.txt'; train, test = ld.loadData(filename_train, filename_test) model = SVD(train,test,feature,steps,alpha,lambda1) model.initialParameter() model.learnMF() MAE,RMSE = model.calMAEAndRMSE() print (MAE,RMSE)
def loadData(self, train_size): l = LoadData() self.data = l.loadData(train_size)